Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899408035> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2899408035 abstract "This paper presents a methodology for determining the geometric center and edges of a lane using intensity scans from a downward-facing LiDAR. This method is particularly useful for creating a baseline reference path for map building or autonomous vehicle control in path-following scenarios. For this work, each laser scan is sequentially aligned to create a top-down, bird's-eye view image of the road. Using image processing techniques, including image thresholding and the Hough Transform, the lane markers are extracted. All scans are re-aligned by the painted lanes under the assumption that the painted lines are continuous and linear in lane centerline s-coordinate. The extrema (peaks and valleys) of each LiDAR intensity profile in the lateral direction are extracted using an optimal extrema filter to determine the location of the painted lane markers. The lane center is determined by averaging the post-processed and aligned left and right lane marker positions. The algorithm is experimentally validated over multiple traversals of a one-mile test track with ground truth validation using a differential GPS. Over repeated traversals, the geometric center of the lane is determined to a lateral error $(1-sigma)$ of 7 mm. The results suggest that this process could be used as a validation step for roadway design specifications, to assess lane-keeping variation errors in human- and computer-driven vehicles, to assess situation- and location-specific repeated deviations from lane center, and to even evaluate the smoothness of the lane-painting process." @default.
- W2899408035 created "2018-11-09" @default.
- W2899408035 creator A5002048870 @default.
- W2899408035 creator A5056680744 @default.
- W2899408035 date "2018-08-01" @default.
- W2899408035 modified "2023-09-23" @default.
- W2899408035 title "Extracting Geometric Road Centerline and Lane Edges from Single-Scan LiDAR Intensity Using Optimally Filtered Extrema Features" @default.
- W2899408035 cites W1552518809 @default.
- W2899408035 cites W1698746845 @default.
- W2899408035 cites W1993023759 @default.
- W2899408035 cites W2079247126 @default.
- W2899408035 cites W2120660345 @default.
- W2899408035 cites W2157076480 @default.
- W2899408035 cites W2316974151 @default.
- W2899408035 cites W2510273861 @default.
- W2899408035 cites W2511178556 @default.
- W2899408035 doi "https://doi.org/10.1109/ccta.2018.8511347" @default.
- W2899408035 hasPublicationYear "2018" @default.
- W2899408035 type Work @default.
- W2899408035 sameAs 2899408035 @default.
- W2899408035 citedByCount "1" @default.
- W2899408035 countsByYear W28994080352022 @default.
- W2899408035 crossrefType "proceedings-article" @default.
- W2899408035 hasAuthorship W2899408035A5002048870 @default.
- W2899408035 hasAuthorship W2899408035A5056680744 @default.
- W2899408035 hasConcept C120665830 @default.
- W2899408035 hasConcept C121332964 @default.
- W2899408035 hasConcept C127313418 @default.
- W2899408035 hasConcept C134306372 @default.
- W2899408035 hasConcept C153180895 @default.
- W2899408035 hasConcept C154945302 @default.
- W2899408035 hasConcept C186633575 @default.
- W2899408035 hasConcept C31972630 @default.
- W2899408035 hasConcept C33923547 @default.
- W2899408035 hasConcept C41008148 @default.
- W2899408035 hasConcept C51399673 @default.
- W2899408035 hasConcept C62649853 @default.
- W2899408035 hasConcept C93038891 @default.
- W2899408035 hasConceptScore W2899408035C120665830 @default.
- W2899408035 hasConceptScore W2899408035C121332964 @default.
- W2899408035 hasConceptScore W2899408035C127313418 @default.
- W2899408035 hasConceptScore W2899408035C134306372 @default.
- W2899408035 hasConceptScore W2899408035C153180895 @default.
- W2899408035 hasConceptScore W2899408035C154945302 @default.
- W2899408035 hasConceptScore W2899408035C186633575 @default.
- W2899408035 hasConceptScore W2899408035C31972630 @default.
- W2899408035 hasConceptScore W2899408035C33923547 @default.
- W2899408035 hasConceptScore W2899408035C41008148 @default.
- W2899408035 hasConceptScore W2899408035C51399673 @default.
- W2899408035 hasConceptScore W2899408035C62649853 @default.
- W2899408035 hasConceptScore W2899408035C93038891 @default.
- W2899408035 hasLocation W28994080351 @default.
- W2899408035 hasOpenAccess W2899408035 @default.
- W2899408035 hasPrimaryLocation W28994080351 @default.
- W2899408035 hasRelatedWork W2055666333 @default.
- W2899408035 hasRelatedWork W2082701464 @default.
- W2899408035 hasRelatedWork W2564833109 @default.
- W2899408035 hasRelatedWork W2970440712 @default.
- W2899408035 hasRelatedWork W3088831177 @default.
- W2899408035 hasRelatedWork W3105798369 @default.
- W2899408035 hasRelatedWork W3107819843 @default.
- W2899408035 hasRelatedWork W3108490186 @default.
- W2899408035 hasRelatedWork W4238992361 @default.
- W2899408035 hasRelatedWork W4296010503 @default.
- W2899408035 isParatext "false" @default.
- W2899408035 isRetracted "false" @default.
- W2899408035 magId "2899408035" @default.
- W2899408035 workType "article" @default.