Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899409916> ?p ?o ?g. }
- W2899409916 endingPage "86" @default.
- W2899409916 startingPage "76" @default.
- W2899409916 abstract "Objective To undertake an early proof‐of‐concept study on a novel, semi‐automated texture‐based scoring system in order to enhance the association between magnetic resonance imaging (MRI) lesions and clinically significant prostate cancer (SPCa). Patients and Methods With ethics approval, 536 imaging volumes were generated from 20 consecutive patients who underwent multiparametric MRI (mp MRI) at time of biopsy. Volumes of interest ( VOI s) included zonal anatomy segmentation and suspicious MRI lesions for cancer (Likert Scale score >2). Entropy (E), measuring heterogeneity, was computed from VOI s and plotted as a multiparametric score defined as the entropy score ( ES ) = E ADC + E K trans + E Ve + E T2 WI . The reference test that was used to define the ground truth comprised systematic saturation biopsies coupled with MRI ‐targeted sampling. This generated 422 cores in all that were individually labelled and oriented in three‐dimensions. Diagnostic accuracy for detection of SPC a, defined as Gleason score ≥3 + 4 or >3 mm of any grade of cancer on a single core, was assessed using receiver operating characteristics, correlation, and descriptive statistics. The proportion of cancerous lesions detected by ES and visual scoring ( VS ) were statistically compared using the paired McNemar test. Results Any cancer (Gleason score 6–8) was found in 12 of the 20 (60%) patients, with a median PSA level of 8.22 ng/mL. SPC a (mean [95% confidence interval, CI] ES = 17.96 [0.72] NATural information unit [NAT]) had a significantly higher ES than non‐ SPC a (mean [95% CI] ES = 15.33 [0.76] NAT ). The ES correlated with Gleason score ( r s = 0.568, P = 0.033) and maximum cancer core length (ρ = 0.781; P < 0.001). The area under the curve for the ES (0.89) and VS (0.91) were not significantly different ( P = 0.75) for the detection of SPC a amongst MRI lesions. Best ES estimated numerical threshold of 16.61 NAT led to a sensitivity of 100% and negative predictive value of 100%. The proportion of MRI lesions that were found to be positive for SPC a using this ES threshold (54%) was significantly higher ( P < 0.001) than using the VS (24% of score 3, 4, 5) in a paired analysis using the McNemar test. In all, 53% of MRI lesions would have avoided biopsy sampling without missing significant disease. Conclusion Capturing heterogeneity of prostate cancer across multiple MRI sequences with the ES yielded high performances for the detection and stratification of SP Ca. The ES outperformed the VS in predicting positivity of lesions, holding promise in the selection of targets for biopsy and calling for further understanding of this association." @default.
- W2899409916 created "2018-11-09" @default.
- W2899409916 creator A5021490989 @default.
- W2899409916 creator A5023853659 @default.
- W2899409916 creator A5032180724 @default.
- W2899409916 creator A5044263958 @default.
- W2899409916 creator A5048872884 @default.
- W2899409916 creator A5049580074 @default.
- W2899409916 creator A5050508952 @default.
- W2899409916 creator A5063870522 @default.
- W2899409916 creator A5075946256 @default.
- W2899409916 creator A5078150458 @default.
- W2899409916 creator A5083172675 @default.
- W2899409916 date "2019-02-05" @default.
- W2899409916 modified "2023-10-01" @default.
- W2899409916 title "Prostate cancer heterogeneity: texture analysis score based on multiple magnetic resonance imaging sequences for detection, stratification and selection of lesions at time of biopsy" @default.
- W2899409916 cites W1589956260 @default.
- W2899409916 cites W1597736876 @default.
- W2899409916 cites W1755951767 @default.
- W2899409916 cites W1827911007 @default.
- W2899409916 cites W1901129140 @default.
- W2899409916 cites W1995875735 @default.
- W2899409916 cites W2003826784 @default.
- W2899409916 cites W2012693272 @default.
- W2899409916 cites W2025971174 @default.
- W2899409916 cites W2035809577 @default.
- W2899409916 cites W2045994398 @default.
- W2899409916 cites W2070947530 @default.
- W2899409916 cites W2082328647 @default.
- W2899409916 cites W2115895082 @default.
- W2899409916 cites W2120357482 @default.
- W2899409916 cites W2124539070 @default.
- W2899409916 cites W2127007253 @default.
- W2899409916 cites W2134798752 @default.
- W2899409916 cites W2136015605 @default.
- W2899409916 cites W2138658618 @default.
- W2899409916 cites W2139566281 @default.
- W2899409916 cites W2154430716 @default.
- W2899409916 cites W2161112598 @default.
- W2899409916 cites W2174661749 @default.
- W2899409916 cites W2182664595 @default.
- W2899409916 cites W2204612330 @default.
- W2899409916 cites W2334235689 @default.
- W2899409916 cites W2340422569 @default.
- W2899409916 cites W2399137980 @default.
- W2899409916 cites W2474446109 @default.
- W2899409916 cites W2475267864 @default.
- W2899409916 cites W2493667027 @default.
- W2899409916 cites W2517157025 @default.
- W2899409916 cites W2519606635 @default.
- W2899409916 cites W2529700497 @default.
- W2899409916 cites W2530952499 @default.
- W2899409916 cites W2562490391 @default.
- W2899409916 cites W2577453388 @default.
- W2899409916 cites W2583306764 @default.
- W2899409916 cites W2589644515 @default.
- W2899409916 cites W2591992783 @default.
- W2899409916 cites W2592929672 @default.
- W2899409916 cites W2593065207 @default.
- W2899409916 cites W2602353650 @default.
- W2899409916 cites W2618357680 @default.
- W2899409916 cites W2627040253 @default.
- W2899409916 cites W2763355946 @default.
- W2899409916 cites W2791546899 @default.
- W2899409916 cites W2793905111 @default.
- W2899409916 cites W313065440 @default.
- W2899409916 cites W783453938 @default.
- W2899409916 doi "https://doi.org/10.1111/bju.14603" @default.
- W2899409916 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30378238" @default.
- W2899409916 hasPublicationYear "2019" @default.
- W2899409916 type Work @default.
- W2899409916 sameAs 2899409916 @default.
- W2899409916 citedByCount "17" @default.
- W2899409916 countsByYear W28994099162019 @default.
- W2899409916 countsByYear W28994099162020 @default.
- W2899409916 countsByYear W28994099162021 @default.
- W2899409916 countsByYear W28994099162022 @default.
- W2899409916 crossrefType "journal-article" @default.
- W2899409916 hasAuthorship W2899409916A5021490989 @default.
- W2899409916 hasAuthorship W2899409916A5023853659 @default.
- W2899409916 hasAuthorship W2899409916A5032180724 @default.
- W2899409916 hasAuthorship W2899409916A5044263958 @default.
- W2899409916 hasAuthorship W2899409916A5048872884 @default.
- W2899409916 hasAuthorship W2899409916A5049580074 @default.
- W2899409916 hasAuthorship W2899409916A5050508952 @default.
- W2899409916 hasAuthorship W2899409916A5063870522 @default.
- W2899409916 hasAuthorship W2899409916A5075946256 @default.
- W2899409916 hasAuthorship W2899409916A5078150458 @default.
- W2899409916 hasAuthorship W2899409916A5083172675 @default.
- W2899409916 hasConcept C105795698 @default.
- W2899409916 hasConcept C121608353 @default.
- W2899409916 hasConcept C126322002 @default.
- W2899409916 hasConcept C126838900 @default.
- W2899409916 hasConcept C143409427 @default.
- W2899409916 hasConcept C186282968 @default.
- W2899409916 hasConcept C2775934546 @default.
- W2899409916 hasConcept C2780192828 @default.
- W2899409916 hasConcept C2989005 @default.