Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899441423> ?p ?o ?g. }
- W2899441423 abstract "Fake news are nowadays an issue of pressing concern, given their recent rise as a potential threat to high-quality journalism and well-informed public discourse. The Fake News Challenge (FNC-1) was organized in 2017 to encourage the development of machine learning-based classification systems for stance detection (i.e., for identifying whether a particular news article agrees, disagrees, discusses, or is unrelated to a particular news headline), thus helping in the detection and analysis of possible instances of fake news. This article presents a new approach to tackle this stance detection problem, based on the combination of string similarity features with a deep neural architecture that leverages ideas previously advanced in the context of learning efficient text representations, document classification, and natural language inference. Specifically, we use bi-directional Recurrent Neural Networks, together with max-pooling over the temporal/sequential dimension and neural attention, for representing (i) the headline, (ii) the first two sentences of the news article, and (iii) the entire news article. These representations are then combined/compared, complemented with similarity features inspired on other FNC-1 approaches, and passed to a final layer that predicts the stance of the article towards the headline. We also explore the use of external sources of information, specifically large datasets of sentence pairs originally proposed for training and evaluating natural language inference methods, in order to pre-train specific components of the neural network architecture (e.g., the RNNs used for encoding sentences). The obtained results attest to the effectiveness of the proposed ideas and show that our model, particularly when considering pre-training and the combination of neural representations together with similarity features, slightly outperforms the previous state-of-the-art." @default.
- W2899441423 created "2018-11-09" @default.
- W2899441423 creator A5011911239 @default.
- W2899441423 creator A5055101594 @default.
- W2899441423 creator A5066155324 @default.
- W2899441423 date "2018-11-02" @default.
- W2899441423 modified "2023-09-27" @default.
- W2899441423 title "Combining Similarity Features and Deep Representation Learning for Stance Detection in the Context of Checking Fake News." @default.
- W2899441423 cites W1924770834 @default.
- W2899441423 cites W2064675550 @default.
- W2899441423 cites W2101105183 @default.
- W2899441423 cites W2250539671 @default.
- W2899441423 cites W2253795368 @default.
- W2899441423 cites W2470673105 @default.
- W2899441423 cites W2587019100 @default.
- W2899441423 cites W2607892599 @default.
- W2899441423 cites W2626778328 @default.
- W2899441423 cites W2735017898 @default.
- W2899441423 cites W2742774967 @default.
- W2899441423 cites W2743087755 @default.
- W2899441423 cites W2751698296 @default.
- W2899441423 cites W2756386045 @default.
- W2899441423 cites W2757749329 @default.
- W2899441423 cites W2761394014 @default.
- W2899441423 cites W2772315370 @default.
- W2899441423 cites W2773734397 @default.
- W2899441423 cites W2782363479 @default.
- W2899441423 cites W2787108264 @default.
- W2899441423 cites W2790166049 @default.
- W2899441423 cites W2791544114 @default.
- W2899441423 cites W2794557536 @default.
- W2899441423 cites W2798524681 @default.
- W2899441423 cites W2886933638 @default.
- W2899441423 cites W2891453035 @default.
- W2899441423 cites W2891637870 @default.
- W2899441423 cites W2949397667 @default.
- W2899441423 cites W2950577311 @default.
- W2899441423 cites W2950726992 @default.
- W2899441423 cites W2950747442 @default.
- W2899441423 cites W2952524425 @default.
- W2899441423 cites W2953084091 @default.
- W2899441423 cites W2953243986 @default.
- W2899441423 cites W2962795929 @default.
- W2899441423 cites W2963042536 @default.
- W2899441423 cites W2963077723 @default.
- W2899441423 cites W2963499246 @default.
- W2899441423 cites W2963918774 @default.
- W2899441423 cites W2963968475 @default.
- W2899441423 cites W2964121744 @default.
- W2899441423 cites W2964189376 @default.
- W2899441423 cites W3031781733 @default.
- W2899441423 cites W41404523 @default.
- W2899441423 cites W658020064 @default.
- W2899441423 hasPublicationYear "2018" @default.
- W2899441423 type Work @default.
- W2899441423 sameAs 2899441423 @default.
- W2899441423 citedByCount "0" @default.
- W2899441423 crossrefType "posted-content" @default.
- W2899441423 hasAuthorship W2899441423A5011911239 @default.
- W2899441423 hasAuthorship W2899441423A5055101594 @default.
- W2899441423 hasAuthorship W2899441423A5066155324 @default.
- W2899441423 hasConcept C103278499 @default.
- W2899441423 hasConcept C108583219 @default.
- W2899441423 hasConcept C115961682 @default.
- W2899441423 hasConcept C119857082 @default.
- W2899441423 hasConcept C138885662 @default.
- W2899441423 hasConcept C151730666 @default.
- W2899441423 hasConcept C154945302 @default.
- W2899441423 hasConcept C17744445 @default.
- W2899441423 hasConcept C195324797 @default.
- W2899441423 hasConcept C199539241 @default.
- W2899441423 hasConcept C204321447 @default.
- W2899441423 hasConcept C2776214188 @default.
- W2899441423 hasConcept C2776359362 @default.
- W2899441423 hasConcept C2777530160 @default.
- W2899441423 hasConcept C2778689934 @default.
- W2899441423 hasConcept C2779343474 @default.
- W2899441423 hasConcept C41008148 @default.
- W2899441423 hasConcept C41895202 @default.
- W2899441423 hasConcept C50644808 @default.
- W2899441423 hasConcept C86803240 @default.
- W2899441423 hasConcept C94625758 @default.
- W2899441423 hasConceptScore W2899441423C103278499 @default.
- W2899441423 hasConceptScore W2899441423C108583219 @default.
- W2899441423 hasConceptScore W2899441423C115961682 @default.
- W2899441423 hasConceptScore W2899441423C119857082 @default.
- W2899441423 hasConceptScore W2899441423C138885662 @default.
- W2899441423 hasConceptScore W2899441423C151730666 @default.
- W2899441423 hasConceptScore W2899441423C154945302 @default.
- W2899441423 hasConceptScore W2899441423C17744445 @default.
- W2899441423 hasConceptScore W2899441423C195324797 @default.
- W2899441423 hasConceptScore W2899441423C199539241 @default.
- W2899441423 hasConceptScore W2899441423C204321447 @default.
- W2899441423 hasConceptScore W2899441423C2776214188 @default.
- W2899441423 hasConceptScore W2899441423C2776359362 @default.
- W2899441423 hasConceptScore W2899441423C2777530160 @default.
- W2899441423 hasConceptScore W2899441423C2778689934 @default.
- W2899441423 hasConceptScore W2899441423C2779343474 @default.
- W2899441423 hasConceptScore W2899441423C41008148 @default.
- W2899441423 hasConceptScore W2899441423C41895202 @default.