Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899441633> ?p ?o ?g. }
- W2899441633 endingPage "381" @default.
- W2899441633 startingPage "369" @default.
- W2899441633 abstract "Functional Magnetic Resonance Imaging (fMRI) has been successfully used for Brain Computer Interfacing (BCI) to classify (imagined) movements of different limbs. However, reliable classification of more subtle signals originating from co-localized neural networks in the sensorimotor cortex, e.g. individual movements of fingers of the same hand, has proved to be more challenging, especially when taking into account the requirement for high single trial reliability in the BCI context. In recent years, Multi Voxel Pattern Analysis (MVPA) has gained momentum as a suitable method to disclose such weak, distributed activation patterns. Much attention has been devoted to developing and validating data analysis strategies, but relatively little guidance is available on the choice of experimental design, even less so in the context of BCI-MVPA. When applicable, block designs are considered the safest choice, but the expectations, strategies and adaptation induced by blocking of similar trials can make it a sub-optimal strategy. Fast event-related designs, in contrast, require a more complicated analysis and show stronger dependence on linearity assumptions but allow for randomly alternating trials. However, they lack resting intervals that enable the BCI participant to process feedback. In this proof-of-concept paper a hybrid blocked fast-event related design is introduced that is novel in the context of MVPA and BCI experiments, and that might overcome these issues by combining the rest periods of the block design with the shorter and randomly alternating trial characteristics of a rapid event-related design. A well-established button-press experiment was used to perform a within-subject comparison of the proposed design with a block and a slow event-related design. The proposed hybrid blocked fast-event related design showed a decoding accuracy that was close to that of the block design, which showed highest accuracy. It allowed for across-design decoding, i.e. reliable prediction of examples obtained with another design. Finally, it also showed the most stable incremental decoding results, obtaining good performance with relatively few blocks. Our findings suggest that the blocked fast event-related design could be a viable alternative to block designs in the context of BCI-MVPA, when expectations, strategies and adaptation make blocking of trials of the same type a sub-optimal strategy. Additionally, the blocked fast event-related design is also suitable for applications in which fast incremental decoding is desired, and enables the use of a slow or block design during the test phase." @default.
- W2899441633 created "2018-11-09" @default.
- W2899441633 creator A5000413698 @default.
- W2899441633 creator A5026206233 @default.
- W2899441633 creator A5078039713 @default.
- W2899441633 creator A5083404139 @default.
- W2899441633 date "2019-02-01" @default.
- W2899441633 modified "2023-09-24" @default.
- W2899441633 title "Optimizing fMRI experimental design for MVPA-based BCI control: Combining the strengths of block and event-related designs" @default.
- W2899441633 cites W1518716985 @default.
- W2899441633 cites W1558020030 @default.
- W2899441633 cites W1588833135 @default.
- W2899441633 cites W1597053271 @default.
- W2899441633 cites W1964897554 @default.
- W2899441633 cites W1969462509 @default.
- W2899441633 cites W1975977220 @default.
- W2899441633 cites W1989494524 @default.
- W2899441633 cites W1990880730 @default.
- W2899441633 cites W1993716436 @default.
- W2899441633 cites W2003400098 @default.
- W2899441633 cites W2003650017 @default.
- W2899441633 cites W2010480035 @default.
- W2899441633 cites W2015682160 @default.
- W2899441633 cites W2038511709 @default.
- W2899441633 cites W2041837455 @default.
- W2899441633 cites W2044685455 @default.
- W2899441633 cites W2051285353 @default.
- W2899441633 cites W2053015520 @default.
- W2899441633 cites W2059554831 @default.
- W2899441633 cites W2061862684 @default.
- W2899441633 cites W2071747588 @default.
- W2899441633 cites W2072735345 @default.
- W2899441633 cites W2076708394 @default.
- W2899441633 cites W2077406389 @default.
- W2899441633 cites W2087146831 @default.
- W2899441633 cites W2087704839 @default.
- W2899441633 cites W2091071415 @default.
- W2899441633 cites W2096424612 @default.
- W2899441633 cites W2098406191 @default.
- W2899441633 cites W2100164583 @default.
- W2899441633 cites W2113889563 @default.
- W2899441633 cites W2117956049 @default.
- W2899441633 cites W2119521010 @default.
- W2899441633 cites W2122027328 @default.
- W2899441633 cites W2123477708 @default.
- W2899441633 cites W2123923307 @default.
- W2899441633 cites W2123927491 @default.
- W2899441633 cites W2125299581 @default.
- W2899441633 cites W2127435725 @default.
- W2899441633 cites W2129651491 @default.
- W2899441633 cites W2135961926 @default.
- W2899441633 cites W2144910141 @default.
- W2899441633 cites W2145217719 @default.
- W2899441633 cites W2146927122 @default.
- W2899441633 cites W2149122455 @default.
- W2899441633 cites W2158485497 @default.
- W2899441633 cites W2169401609 @default.
- W2899441633 cites W2469334922 @default.
- W2899441633 cites W2522841925 @default.
- W2899441633 cites W2584955774 @default.
- W2899441633 cites W2605491889 @default.
- W2899441633 doi "https://doi.org/10.1016/j.neuroimage.2018.10.080" @default.
- W2899441633 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30391345" @default.
- W2899441633 hasPublicationYear "2019" @default.
- W2899441633 type Work @default.
- W2899441633 sameAs 2899441633 @default.
- W2899441633 citedByCount "17" @default.
- W2899441633 countsByYear W28994416332019 @default.
- W2899441633 countsByYear W28994416332020 @default.
- W2899441633 countsByYear W28994416332021 @default.
- W2899441633 countsByYear W28994416332022 @default.
- W2899441633 countsByYear W28994416332023 @default.
- W2899441633 crossrefType "journal-article" @default.
- W2899441633 hasAuthorship W2899441633A5000413698 @default.
- W2899441633 hasAuthorship W2899441633A5026206233 @default.
- W2899441633 hasAuthorship W2899441633A5078039713 @default.
- W2899441633 hasAuthorship W2899441633A5083404139 @default.
- W2899441633 hasBestOaLocation W28994416331 @default.
- W2899441633 hasConcept C107457646 @default.
- W2899441633 hasConcept C114614502 @default.
- W2899441633 hasConcept C119857082 @default.
- W2899441633 hasConcept C121332964 @default.
- W2899441633 hasConcept C151730666 @default.
- W2899441633 hasConcept C154945302 @default.
- W2899441633 hasConcept C15744967 @default.
- W2899441633 hasConcept C169760540 @default.
- W2899441633 hasConcept C173201364 @default.
- W2899441633 hasConcept C2434490 @default.
- W2899441633 hasConcept C2524010 @default.
- W2899441633 hasConcept C2776303644 @default.
- W2899441633 hasConcept C2777210771 @default.
- W2899441633 hasConcept C2779226451 @default.
- W2899441633 hasConcept C2779343474 @default.
- W2899441633 hasConcept C2779662365 @default.
- W2899441633 hasConcept C33923547 @default.
- W2899441633 hasConcept C41008148 @default.
- W2899441633 hasConcept C522805319 @default.
- W2899441633 hasConcept C54170458 @default.