Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899442204> ?p ?o ?g. }
- W2899442204 endingPage "2976" @default.
- W2899442204 startingPage "2976" @default.
- W2899442204 abstract "Accurate wind speed forecasting is a significant factor in grid load management and system operation. The aim of this study is to propose a framework for more precise short-term wind speed forecasting based on empirical mode decomposition (EMD) and hybrid linear/nonlinear models. Original wind speed series is decomposed into a finite number of intrinsic mode functions (IMFs) and residuals by using the EMD. Several popular linear and nonlinear models, including autoregressive integrated moving average (ARIMA), support vector machine (SVM), random forest (RF), artificial neural network with back propagation (BP), extreme learning machines (ELM) and convolutional neural network (CNN), are utilized to study IMFs and residuals, respectively. An ensemble forecast for the original wind speed series is then obtained. Various experiments were conducted on real wind speed series at four wind sites in China. The performance and robustness of various hybrid linear/nonlinear models at two time intervals (10 min and 1 h) are compared comprehensively. It is shown that the EMD based hybrid linear/nonlinear models have better accuracy and more robust performance than the single models with/without EMD. Among the five hybrid models, EMD-ARIMA-RF has the best accuracy on the whole for 10 min data, and the mean absolute percentage error (MAPE) is less than 0.04. However, for the 1 h data, no model can always perform well on the four datasets, and the MAPE is around 0.15." @default.
- W2899442204 created "2018-11-09" @default.
- W2899442204 creator A5005748681 @default.
- W2899442204 creator A5011266256 @default.
- W2899442204 creator A5013302911 @default.
- W2899442204 creator A5063391298 @default.
- W2899442204 date "2018-11-01" @default.
- W2899442204 modified "2023-09-25" @default.
- W2899442204 title "Short-Term Wind Speed Forecasting Based on Signal Decomposing Algorithm and Hybrid Linear/Nonlinear Models" @default.
- W2899442204 cites W1185746543 @default.
- W2899442204 cites W1705374184 @default.
- W2899442204 cites W1970978817 @default.
- W2899442204 cites W1979331645 @default.
- W2899442204 cites W1989092102 @default.
- W2899442204 cites W2004193933 @default.
- W2899442204 cites W2007221293 @default.
- W2899442204 cites W2011630059 @default.
- W2899442204 cites W2022912953 @default.
- W2899442204 cites W2024377782 @default.
- W2899442204 cites W2039238531 @default.
- W2899442204 cites W2039306928 @default.
- W2899442204 cites W2079522653 @default.
- W2899442204 cites W2111072639 @default.
- W2899442204 cites W2123513648 @default.
- W2899442204 cites W2129276500 @default.
- W2899442204 cites W2254535312 @default.
- W2899442204 cites W2280029926 @default.
- W2899442204 cites W2286725013 @default.
- W2899442204 cites W2401688955 @default.
- W2899442204 cites W2581822685 @default.
- W2899442204 cites W2606283685 @default.
- W2899442204 cites W2606683984 @default.
- W2899442204 cites W2742365644 @default.
- W2899442204 cites W2743110839 @default.
- W2899442204 cites W2755364685 @default.
- W2899442204 cites W2755841959 @default.
- W2899442204 cites W2762198305 @default.
- W2899442204 cites W2768102848 @default.
- W2899442204 cites W2770058012 @default.
- W2899442204 cites W2771255359 @default.
- W2899442204 cites W2773931999 @default.
- W2899442204 cites W2783204403 @default.
- W2899442204 cites W2790834859 @default.
- W2899442204 cites W2792244305 @default.
- W2899442204 cites W2793408387 @default.
- W2899442204 cites W2796072231 @default.
- W2899442204 cites W2800437387 @default.
- W2899442204 cites W2801076518 @default.
- W2899442204 cites W2808707997 @default.
- W2899442204 cites W2810603292 @default.
- W2899442204 cites W2811189390 @default.
- W2899442204 cites W341735883 @default.
- W2899442204 cites W4212883601 @default.
- W2899442204 cites W602833636 @default.
- W2899442204 doi "https://doi.org/10.3390/en11112976" @default.
- W2899442204 hasPublicationYear "2018" @default.
- W2899442204 type Work @default.
- W2899442204 sameAs 2899442204 @default.
- W2899442204 citedByCount "19" @default.
- W2899442204 countsByYear W28994422042018 @default.
- W2899442204 countsByYear W28994422042019 @default.
- W2899442204 countsByYear W28994422042020 @default.
- W2899442204 countsByYear W28994422042021 @default.
- W2899442204 countsByYear W28994422042022 @default.
- W2899442204 countsByYear W28994422042023 @default.
- W2899442204 crossrefType "journal-article" @default.
- W2899442204 hasAuthorship W2899442204A5005748681 @default.
- W2899442204 hasAuthorship W2899442204A5011266256 @default.
- W2899442204 hasAuthorship W2899442204A5013302911 @default.
- W2899442204 hasAuthorship W2899442204A5063391298 @default.
- W2899442204 hasBestOaLocation W28994422041 @default.
- W2899442204 hasConcept C104317684 @default.
- W2899442204 hasConcept C105795698 @default.
- W2899442204 hasConcept C112633086 @default.
- W2899442204 hasConcept C11413529 @default.
- W2899442204 hasConcept C119857082 @default.
- W2899442204 hasConcept C121332964 @default.
- W2899442204 hasConcept C12267149 @default.
- W2899442204 hasConcept C139945424 @default.
- W2899442204 hasConcept C150217764 @default.
- W2899442204 hasConcept C151406439 @default.
- W2899442204 hasConcept C153294291 @default.
- W2899442204 hasConcept C154945302 @default.
- W2899442204 hasConcept C158622935 @default.
- W2899442204 hasConcept C159877910 @default.
- W2899442204 hasConcept C161067210 @default.
- W2899442204 hasConcept C175706884 @default.
- W2899442204 hasConcept C185592680 @default.
- W2899442204 hasConcept C24338571 @default.
- W2899442204 hasConcept C25570617 @default.
- W2899442204 hasConcept C2780150128 @default.
- W2899442204 hasConcept C33923547 @default.
- W2899442204 hasConcept C41008148 @default.
- W2899442204 hasConcept C50644808 @default.
- W2899442204 hasConcept C55493867 @default.
- W2899442204 hasConcept C62520636 @default.
- W2899442204 hasConcept C63479239 @default.
- W2899442204 hasConcept C74883015 @default.