Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899450198> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2899450198 endingPage "101" @default.
- W2899450198 startingPage "89" @default.
- W2899450198 abstract "Our understanding and ability to effectively monitor and manage coastal ecosystems are severely limited by observation methods. Automatic recognition of species in natural environment is a promising tool which would revolutionize video and image analysis for a wide range of applications in marine ecology. However, classifying fish from images captured by underwater cameras is in general very challenging due to noise and illumination variations in water. Previous classification methods in the literature relies on filtering the images to separate the fish from the background or sharpening the images by removing background noise. This pre-filtering process may negatively impact the classification accuracy. In this work, we propose a Convolutional Neural Network (CNN) using the Squeeze-and-Excitation (SE) architecture for classifying images of fish without pre-filtering. Different from conventional schemes, this scheme is divided into two steps. The first step is to train the fish classifier via a public data set, i.e., Fish4Knowledge, without using image augmentation, named as pre-training. The second step is to train the classifier based on a new data set consisting of species that we are interested in for classification, named as post-training. The weights obtained from pre-training are applied to post-training as a priori. This is also known as transfer learning. Our solution achieves the state-of-the-art accuracy of 99.27% accuracy on the pre-training. The accuracy on the post-training is 83.68%. Experiments on the post-training with image augmentation yields an accuracy of 87.74%, indicating that the solution is viable with a larger data set." @default.
- W2899450198 created "2018-11-09" @default.
- W2899450198 creator A5002394922 @default.
- W2899450198 creator A5003595394 @default.
- W2899450198 creator A5047021899 @default.
- W2899450198 creator A5063345711 @default.
- W2899450198 creator A5064258940 @default.
- W2899450198 creator A5076950471 @default.
- W2899450198 creator A5088563530 @default.
- W2899450198 creator A5090998335 @default.
- W2899450198 date "2019-01-01" @default.
- W2899450198 modified "2023-09-27" @default.
- W2899450198 title "Biometric Fish Classification of Temperate Species Using Convolutional Neural Network with Squeeze-and-Excitation" @default.
- W2899450198 cites W1980537055 @default.
- W2899450198 cites W2035544452 @default.
- W2899450198 cites W2068165347 @default.
- W2899450198 cites W2131251535 @default.
- W2899450198 cites W2186155590 @default.
- W2899450198 cites W2483420664 @default.
- W2899450198 cites W2565490720 @default.
- W2899450198 cites W2752782242 @default.
- W2899450198 cites W2765222550 @default.
- W2899450198 cites W2767556927 @default.
- W2899450198 cites W2786397545 @default.
- W2899450198 cites W2963037989 @default.
- W2899450198 doi "https://doi.org/10.1007/978-3-030-22999-3_9" @default.
- W2899450198 hasPublicationYear "2019" @default.
- W2899450198 type Work @default.
- W2899450198 sameAs 2899450198 @default.
- W2899450198 citedByCount "13" @default.
- W2899450198 countsByYear W28994501982020 @default.
- W2899450198 countsByYear W28994501982021 @default.
- W2899450198 countsByYear W28994501982022 @default.
- W2899450198 countsByYear W28994501982023 @default.
- W2899450198 crossrefType "book-chapter" @default.
- W2899450198 hasAuthorship W2899450198A5002394922 @default.
- W2899450198 hasAuthorship W2899450198A5003595394 @default.
- W2899450198 hasAuthorship W2899450198A5047021899 @default.
- W2899450198 hasAuthorship W2899450198A5063345711 @default.
- W2899450198 hasAuthorship W2899450198A5064258940 @default.
- W2899450198 hasAuthorship W2899450198A5076950471 @default.
- W2899450198 hasAuthorship W2899450198A5088563530 @default.
- W2899450198 hasAuthorship W2899450198A5090998335 @default.
- W2899450198 hasBestOaLocation W28994501982 @default.
- W2899450198 hasConcept C111472728 @default.
- W2899450198 hasConcept C115961682 @default.
- W2899450198 hasConcept C138885662 @default.
- W2899450198 hasConcept C150899416 @default.
- W2899450198 hasConcept C153180895 @default.
- W2899450198 hasConcept C154945302 @default.
- W2899450198 hasConcept C31972630 @default.
- W2899450198 hasConcept C41008148 @default.
- W2899450198 hasConcept C75294576 @default.
- W2899450198 hasConcept C75553542 @default.
- W2899450198 hasConcept C81363708 @default.
- W2899450198 hasConcept C95623464 @default.
- W2899450198 hasConceptScore W2899450198C111472728 @default.
- W2899450198 hasConceptScore W2899450198C115961682 @default.
- W2899450198 hasConceptScore W2899450198C138885662 @default.
- W2899450198 hasConceptScore W2899450198C150899416 @default.
- W2899450198 hasConceptScore W2899450198C153180895 @default.
- W2899450198 hasConceptScore W2899450198C154945302 @default.
- W2899450198 hasConceptScore W2899450198C31972630 @default.
- W2899450198 hasConceptScore W2899450198C41008148 @default.
- W2899450198 hasConceptScore W2899450198C75294576 @default.
- W2899450198 hasConceptScore W2899450198C75553542 @default.
- W2899450198 hasConceptScore W2899450198C81363708 @default.
- W2899450198 hasConceptScore W2899450198C95623464 @default.
- W2899450198 hasLocation W28994501981 @default.
- W2899450198 hasLocation W28994501982 @default.
- W2899450198 hasOpenAccess W2899450198 @default.
- W2899450198 hasPrimaryLocation W28994501981 @default.
- W2899450198 hasRelatedWork W2964383635 @default.
- W2899450198 hasRelatedWork W2972069047 @default.
- W2899450198 hasRelatedWork W2986507176 @default.
- W2899450198 hasRelatedWork W2995914718 @default.
- W2899450198 hasRelatedWork W3012393889 @default.
- W2899450198 hasRelatedWork W3018421652 @default.
- W2899450198 hasRelatedWork W3153891452 @default.
- W2899450198 hasRelatedWork W3189091156 @default.
- W2899450198 hasRelatedWork W4225852842 @default.
- W2899450198 hasRelatedWork W564581980 @default.
- W2899450198 isParatext "false" @default.
- W2899450198 isRetracted "false" @default.
- W2899450198 magId "2899450198" @default.
- W2899450198 workType "book-chapter" @default.