Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899473676> ?p ?o ?g. }
- W2899473676 endingPage "1137" @default.
- W2899473676 startingPage "1128" @default.
- W2899473676 abstract "The farnesoid X receptor (FXR) emerges as a promising drug target involved in regulating various metabolic pathways, yet some xenobiotic compounds binding to FXR would be an important determinant to induce the receptor dysfunctions that lead to undesirable side effects. Thus, it is critical to identify potential xenobiotics that disrupt normal FXR functions. In this work, five machine learning methods coupled with eight molecular fingerprints and 20 molecular descriptors were used to develop classification models for prediction of FXR binders. The built models were evaluated using the test set and two external validation sets. The best model was obtained using a combination of molecular descriptors and fingerprints, which exhibited the AUC values of 0.83 and 0.92 for the test set and the first external validation set, respectively. The overall prediction accuracy for the second external validation set with the best model was over 85%. Furthermore, several representative privileged substructures that are essential for FXR binders, such as benzimidazole, indole, and stilbene moiety, were detected using information gain and substructure frequency analysis. The applicability domain analysis via the Euclidean distance-based approach demonstrated a marked impact on the improvement of prediction accuracy. Overall, our built models could be helpful to rapidly identify potential chemicals binding to FXR." @default.
- W2899473676 created "2018-11-09" @default.
- W2899473676 creator A5026143643 @default.
- W2899473676 creator A5047875875 @default.
- W2899473676 creator A5052022256 @default.
- W2899473676 creator A5052049405 @default.
- W2899473676 creator A5063428886 @default.
- W2899473676 creator A5084075594 @default.
- W2899473676 date "2018-10-29" @default.
- W2899473676 modified "2023-10-16" @default.
- W2899473676 title "Prediction of Farnesoid X Receptor Disruptors with Machine Learning Methods" @default.
- W2899473676 cites W1964777932 @default.
- W2899473676 cites W1967977080 @default.
- W2899473676 cites W1978777023 @default.
- W2899473676 cites W1979900513 @default.
- W2899473676 cites W1981708439 @default.
- W2899473676 cites W1982880564 @default.
- W2899473676 cites W1997355076 @default.
- W2899473676 cites W2000189060 @default.
- W2899473676 cites W2001908216 @default.
- W2899473676 cites W2005911243 @default.
- W2899473676 cites W2017358597 @default.
- W2899473676 cites W2032704998 @default.
- W2899473676 cites W2046881237 @default.
- W2899473676 cites W2049515100 @default.
- W2899473676 cites W2066607517 @default.
- W2899473676 cites W2070230278 @default.
- W2899473676 cites W2077217416 @default.
- W2899473676 cites W2078305106 @default.
- W2899473676 cites W2079699273 @default.
- W2899473676 cites W2082752454 @default.
- W2899473676 cites W2083322177 @default.
- W2899473676 cites W2085946956 @default.
- W2899473676 cites W2095649738 @default.
- W2899473676 cites W2099017410 @default.
- W2899473676 cites W2102459969 @default.
- W2899473676 cites W2107081909 @default.
- W2899473676 cites W2122478167 @default.
- W2899473676 cites W2137213119 @default.
- W2899473676 cites W2142427646 @default.
- W2899473676 cites W2143392414 @default.
- W2899473676 cites W2153635508 @default.
- W2899473676 cites W2158609797 @default.
- W2899473676 cites W2159887157 @default.
- W2899473676 cites W2167453047 @default.
- W2899473676 cites W2169854389 @default.
- W2899473676 cites W2233364043 @default.
- W2899473676 cites W2253823912 @default.
- W2899473676 cites W2282020797 @default.
- W2899473676 cites W2439670399 @default.
- W2899473676 cites W2467309505 @default.
- W2899473676 cites W2474575800 @default.
- W2899473676 cites W2477887382 @default.
- W2899473676 cites W2593632281 @default.
- W2899473676 cites W2606980236 @default.
- W2899473676 cites W2613825731 @default.
- W2899473676 cites W2643224957 @default.
- W2899473676 cites W2751348143 @default.
- W2899473676 cites W2760930010 @default.
- W2899473676 cites W2766878249 @default.
- W2899473676 cites W2767222721 @default.
- W2899473676 cites W2767555294 @default.
- W2899473676 cites W2800338502 @default.
- W2899473676 cites W2802404464 @default.
- W2899473676 cites W2883581224 @default.
- W2899473676 doi "https://doi.org/10.1021/acs.chemrestox.8b00162" @default.
- W2899473676 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30371063" @default.
- W2899473676 hasPublicationYear "2018" @default.
- W2899473676 type Work @default.
- W2899473676 sameAs 2899473676 @default.
- W2899473676 citedByCount "12" @default.
- W2899473676 countsByYear W28994736762020 @default.
- W2899473676 countsByYear W28994736762021 @default.
- W2899473676 countsByYear W28994736762022 @default.
- W2899473676 countsByYear W28994736762023 @default.
- W2899473676 crossrefType "journal-article" @default.
- W2899473676 hasAuthorship W2899473676A5026143643 @default.
- W2899473676 hasAuthorship W2899473676A5047875875 @default.
- W2899473676 hasAuthorship W2899473676A5052022256 @default.
- W2899473676 hasAuthorship W2899473676A5052049405 @default.
- W2899473676 hasAuthorship W2899473676A5063428886 @default.
- W2899473676 hasAuthorship W2899473676A5084075594 @default.
- W2899473676 hasConcept C104317684 @default.
- W2899473676 hasConcept C107908354 @default.
- W2899473676 hasConcept C115448650 @default.
- W2899473676 hasConcept C119857082 @default.
- W2899473676 hasConcept C132040763 @default.
- W2899473676 hasConcept C154945302 @default.
- W2899473676 hasConcept C164126121 @default.
- W2899473676 hasConcept C164923092 @default.
- W2899473676 hasConcept C169903167 @default.
- W2899473676 hasConcept C177264268 @default.
- W2899473676 hasConcept C181199279 @default.
- W2899473676 hasConcept C185592680 @default.
- W2899473676 hasConcept C186060115 @default.
- W2899473676 hasConcept C199360897 @default.
- W2899473676 hasConcept C203862802 @default.
- W2899473676 hasConcept C2989108626 @default.