Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899484106> ?p ?o ?g. }
- W2899484106 endingPage "504" @default.
- W2899484106 startingPage "492" @default.
- W2899484106 abstract "The gut microbiota has strong potential to biosynthesize large amounts of structurally distinct metabolites with a variety of biological activities that are promising drugs and drug candidates. Only a fraction of the gut microbiota have been cultivated so far, which makes it even more important to investigate microbial ‘dark matter’, which is a promising source for drug discovery. One emerging approach is to develop metabolomics data sets and to construct metabolic network models by machine learning for both clinics and laboratories. The boundary between genome/metagenomics-based, culture-based, and metabolomics-based mining approaches is fading and it is becoming feasible to combine two or more strategies to accelerate the mining of bioactive metabolites in the future. The mammalian gut has a remarkable abundance of microbes. These microbes have strong potential to biosynthesize distinct metabolites that are promising drugs, and many more bioactive compounds have yet to be explored as potential drug candidates. These small bioactive molecules often mediate important host–microbe and microbe–microbe interactions. In this review, we provide perspectives on and challenges associated with three mining strategies – culture-based, (meta)genomics-based, and metabolomics-based mining approaches – for discovering natural products derived from biosynthetic gene clusters (BGCs) in mammalian gut microbiota. In addition, we comprehensively summarize the structures, biological functions, and BGCs of these compounds. Improving these techniques, including by using combinatorial approaches, may accelerate drug discovery from gut microbes. The mammalian gut has a remarkable abundance of microbes. These microbes have strong potential to biosynthesize distinct metabolites that are promising drugs, and many more bioactive compounds have yet to be explored as potential drug candidates. These small bioactive molecules often mediate important host–microbe and microbe–microbe interactions. In this review, we provide perspectives on and challenges associated with three mining strategies – culture-based, (meta)genomics-based, and metabolomics-based mining approaches – for discovering natural products derived from biosynthetic gene clusters (BGCs) in mammalian gut microbiota. In addition, we comprehensively summarize the structures, biological functions, and BGCs of these compounds. Improving these techniques, including by using combinatorial approaches, may accelerate drug discovery from gut microbes. group of genes in a genome that encodes a biosynthetic pathway to produce a specialized metabolite in bacteria, fungi, and plants. technology in which the targeting fragment is digested from bacterial chromosomes in vitro by the RNA-guided Cas9 nuclease at two designated loci and cloned to the vector by Gibson assembly. essential adaptive immunity system in certain bacteria and archaea, enabling the organisms to respond to and eliminate invading genetic material. Based on these technologies, it is possible to effectively and specifically change genes within organisms. culturing approach that uses multiple culture conditions and MALDI–TOF and 16S rRNA to rapidly identify large numbers of colonies. novel technique that links functional genes and phylogenetic markers in uncultured single cells that cost-effectively provides a throughput of hundreds of thousands of cells. combining in vitro exonuclease and annealing with the remarkable capacity of full length RecET homologous recombination to retrieve specified regions from genomic DNA preparations, this method bypasses DNA library construction and screening. aligning and merging fragments from a longer DNA sequence to reconstruct the original sequence. process of grouping reads or contigs and assigning them to operational taxonomic units. web tool that enables a systematic investigation of monophyletic genomes to detect significantly enriched groups of homologous genes between one taxon and another. peptide secondary metabolites from bacteria and fungi with a variety of medicinal properties synthesized by enzymes called nonribosomal peptide synthetases (NRPSs) and a series of tailoring enzymes, in which ribosomal machineries and messenger RNAs do not play a role. natural products found in a variety of organisms, including plants, fungi, and bacteria, which are produced by the polymerization of acyl-coenzyme A by PK synthase enzymes and a series of tailoring enzymes, including transport, regulatory, and modifying enzymes. in vivo reaction and based either on the red genes of the lambda phage or the recE/recT genes of the Rac prophage. Redα or RecE act as a 5′ → 3′ exonuclease and Redβ or RecT as a single strand DNA binding protein. novel approach to link 16s rRNA amplicon profiles to metagenomes that enable capturing both ribosomal RNA variable regions and their flanking protein-coding genes simultaneously. natural products produced by ribosomes with molecular weight less than 1000 Da that undergo chemical transformations after translation. They are biosynthesized by precursor peptides and a series of enzymes, including immune factors and transport, regulatory, and modifying enzymes. platform that drives bacteria to express and self-test peptides of any size, structure, or sequence complexity for antimicrobial activity. It is a high-throughput screening platform that rapidly identifies lead antimicrobial peptides to combat multidrug-resistant Gram-negative bacteria. ribosomally produced peptides with post-translationally installed thiazole and oxazole heterocycles derived from cysteine, serine, and threonine residues." @default.
- W2899484106 created "2018-11-09" @default.
- W2899484106 creator A5006923891 @default.
- W2899484106 creator A5008929986 @default.
- W2899484106 creator A5011834726 @default.
- W2899484106 creator A5063103973 @default.
- W2899484106 creator A5071919859 @default.
- W2899484106 date "2019-05-01" @default.
- W2899484106 modified "2023-10-18" @default.
- W2899484106 title "Natural Products from Mammalian Gut Microbiota" @default.
- W2899484106 cites W1213974439 @default.
- W2899484106 cites W1527264120 @default.
- W2899484106 cites W1528357204 @default.
- W2899484106 cites W1555471169 @default.
- W2899484106 cites W1580639168 @default.
- W2899484106 cites W1584790813 @default.
- W2899484106 cites W1715339469 @default.
- W2899484106 cites W1878521557 @default.
- W2899484106 cites W1904975951 @default.
- W2899484106 cites W1908709110 @default.
- W2899484106 cites W1923727157 @default.
- W2899484106 cites W1966376668 @default.
- W2899484106 cites W1970953856 @default.
- W2899484106 cites W1989478912 @default.
- W2899484106 cites W1998027391 @default.
- W2899484106 cites W2001368745 @default.
- W2899484106 cites W2005309431 @default.
- W2899484106 cites W2008035557 @default.
- W2899484106 cites W2009257824 @default.
- W2899484106 cites W2013876211 @default.
- W2899484106 cites W2075479850 @default.
- W2899484106 cites W2092916940 @default.
- W2899484106 cites W2103901746 @default.
- W2899484106 cites W2113977541 @default.
- W2899484106 cites W2117815398 @default.
- W2899484106 cites W2118532777 @default.
- W2899484106 cites W2118573563 @default.
- W2899484106 cites W2120656564 @default.
- W2899484106 cites W2125427536 @default.
- W2899484106 cites W2128356141 @default.
- W2899484106 cites W2130546036 @default.
- W2899484106 cites W2139119508 @default.
- W2899484106 cites W2144305368 @default.
- W2899484106 cites W2149220857 @default.
- W2899484106 cites W2160017126 @default.
- W2899484106 cites W2160251091 @default.
- W2899484106 cites W2261641299 @default.
- W2899484106 cites W2264701027 @default.
- W2899484106 cites W2291242534 @default.
- W2899484106 cites W2295182096 @default.
- W2899484106 cites W2300184066 @default.
- W2899484106 cites W2301389244 @default.
- W2899484106 cites W2335822530 @default.
- W2899484106 cites W2347061404 @default.
- W2899484106 cites W2398894736 @default.
- W2899484106 cites W2461558117 @default.
- W2899484106 cites W2511200987 @default.
- W2899484106 cites W2515737083 @default.
- W2899484106 cites W2529113939 @default.
- W2899484106 cites W2545187638 @default.
- W2899484106 cites W2571989678 @default.
- W2899484106 cites W2585251606 @default.
- W2899484106 cites W2594031647 @default.
- W2899484106 cites W2594735183 @default.
- W2899484106 cites W2604454608 @default.
- W2899484106 cites W2626794769 @default.
- W2899484106 cites W2752625644 @default.
- W2899484106 cites W2761432259 @default.
- W2899484106 cites W2762948746 @default.
- W2899484106 cites W2769879614 @default.
- W2899484106 cites W2782456186 @default.
- W2899484106 cites W2790593817 @default.
- W2899484106 cites W2799615008 @default.
- W2899484106 cites W2800136432 @default.
- W2899484106 cites W2802744456 @default.
- W2899484106 cites W2802923379 @default.
- W2899484106 cites W2807727258 @default.
- W2899484106 cites W2807980901 @default.
- W2899484106 cites W2952896068 @default.
- W2899484106 cites W4235410163 @default.
- W2899484106 doi "https://doi.org/10.1016/j.tibtech.2018.10.003" @default.
- W2899484106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30392727" @default.
- W2899484106 hasPublicationYear "2019" @default.
- W2899484106 type Work @default.
- W2899484106 sameAs 2899484106 @default.
- W2899484106 citedByCount "48" @default.
- W2899484106 countsByYear W28994841062019 @default.
- W2899484106 countsByYear W28994841062020 @default.
- W2899484106 countsByYear W28994841062021 @default.
- W2899484106 countsByYear W28994841062022 @default.
- W2899484106 countsByYear W28994841062023 @default.
- W2899484106 crossrefType "journal-article" @default.
- W2899484106 hasAuthorship W2899484106A5006923891 @default.
- W2899484106 hasAuthorship W2899484106A5008929986 @default.
- W2899484106 hasAuthorship W2899484106A5011834726 @default.
- W2899484106 hasAuthorship W2899484106A5063103973 @default.
- W2899484106 hasAuthorship W2899484106A5071919859 @default.
- W2899484106 hasConcept C104317684 @default.