Matches in SemOpenAlex for { <https://semopenalex.org/work/W289958154> ?p ?o ?g. }
- W289958154 abstract "Computer systems today are no longer monolithic programs; instead they usually comprise multiple interacting programs. With the continuous growth of these systems and with their integration into systems of systems, interoperability becomes a fundamental issue. Integration of systems is more complex and occurs more frequently than ever before. One solution to this problem could be the automated model-based synthesis of mediators at runtime. However, this approach has strong prerequisites. It requires the existence of adequate models of the systems to be connected. Many systems encountered in practice, on the other hand, do not come with models. In such cases models have to be constructed ex post (at runtime). Furthermore, adequate models must capture control as well as data aspects of a system. In most protocols, for instance, data parameters (e.g., session identifiers or sequence numbers) can influence system behavior. Models of such systems can be thought of as interface programs: Rather than covering only the control behavior, they describe explicitly which data values are relevant to the communication and have to be remembered and reused. This thesis addresses the problem of inferring interface programs of systems at runtime using active automata learning techniques. Active automata learning uses a test-based and counterexample-driven approach to inferring models of black-box systems. The method has originally been introduced for finite automata (the popular L∗ algorithm). Extending active learning to interface programs requires research in three directions: First, the efficiency of active learning algorithms has to be optimized to scale when dealing with data parameters. Second, techniques are needed for finding counterexamples driving the learning process in practice. Third, active learning has to be extended to richer models than Mealy machines or DFAs, capable of expressing interface programs. The work presented in this thesis improves the state of the art in all three directions. More concretely, the contributions of this thesis are the following: first, an efficient active learning algorithm for DFAs and Mealy machines that combines the ideas of several known active learning algorithms in a non-trivial way; second, a framework for finding counterexamples in black-box scenarios, leveraging the incremental and monotonic evolution of hypothetical models characteristic of active automata learning; third, and most importantly, the technically involved extension of the partition/refinement-based approach of active learning to interface programs. The impact of extending active learning to interface programs becomes apparent already for small systems. We inferred a simple data structure (a nested stack of overall capacity 16) as an interface program in no more than 20 seconds, using less than 45,000 tests and only 9 counterexamples. The corresponding Mealy machine model, on the other hand, would have more than 109 states already in the case of a very small finite data domain of size 4 and require significantly more than 109 tests when being inferred using the classic L∗ algorithm." @default.
- W289958154 created "2016-06-24" @default.
- W289958154 creator A5037058130 @default.
- W289958154 date "2012-06-26" @default.
- W289958154 modified "2023-09-23" @default.
- W289958154 title "Active learning of interface programs" @default.
- W289958154 cites W100976464 @default.
- W289958154 cites W1493899432 @default.
- W289958154 cites W1494143614 @default.
- W289958154 cites W1506632077 @default.
- W289958154 cites W1507281497 @default.
- W289958154 cites W1509343160 @default.
- W289958154 cites W1510709958 @default.
- W289958154 cites W1517402704 @default.
- W289958154 cites W1520252399 @default.
- W289958154 cites W1529010373 @default.
- W289958154 cites W1531123507 @default.
- W289958154 cites W1533617020 @default.
- W289958154 cites W1538240903 @default.
- W289958154 cites W1543034107 @default.
- W289958154 cites W15663078 @default.
- W289958154 cites W1573881032 @default.
- W289958154 cites W1574991981 @default.
- W289958154 cites W1578170176 @default.
- W289958154 cites W1584684441 @default.
- W289958154 cites W1587497712 @default.
- W289958154 cites W1597210183 @default.
- W289958154 cites W1790935867 @default.
- W289958154 cites W1802580057 @default.
- W289958154 cites W182269909 @default.
- W289958154 cites W1835362427 @default.
- W289958154 cites W1840142437 @default.
- W289958154 cites W186035943 @default.
- W289958154 cites W1938383858 @default.
- W289958154 cites W1962619228 @default.
- W289958154 cites W1989445634 @default.
- W289958154 cites W1993445050 @default.
- W289958154 cites W1994748133 @default.
- W289958154 cites W2008387578 @default.
- W289958154 cites W2011762419 @default.
- W289958154 cites W2012148899 @default.
- W289958154 cites W2017603160 @default.
- W289958154 cites W2025677988 @default.
- W289958154 cites W2033904437 @default.
- W289958154 cites W2045000744 @default.
- W289958154 cites W2057427285 @default.
- W289958154 cites W2061607336 @default.
- W289958154 cites W2074001172 @default.
- W289958154 cites W2076343783 @default.
- W289958154 cites W2081396910 @default.
- W289958154 cites W2088432971 @default.
- W289958154 cites W2092622056 @default.
- W289958154 cites W2094783813 @default.
- W289958154 cites W2098039922 @default.
- W289958154 cites W2098095461 @default.
- W289958154 cites W2110908283 @default.
- W289958154 cites W2119467398 @default.
- W289958154 cites W2121059325 @default.
- W289958154 cites W2124081952 @default.
- W289958154 cites W2126062523 @default.
- W289958154 cites W2128004631 @default.
- W289958154 cites W2137722231 @default.
- W289958154 cites W2140606869 @default.
- W289958154 cites W2140884724 @default.
- W289958154 cites W2143903830 @default.
- W289958154 cites W2145576118 @default.
- W289958154 cites W2148922260 @default.
- W289958154 cites W2151780773 @default.
- W289958154 cites W2177967933 @default.
- W289958154 cites W2206957158 @default.
- W289958154 cites W2294152467 @default.
- W289958154 cites W2295399529 @default.
- W289958154 cites W28288553 @default.
- W289958154 cites W2913344232 @default.
- W289958154 cites W63844825 @default.
- W289958154 cites W2172180777 @default.
- W289958154 cites W2507873988 @default.
- W289958154 doi "https://doi.org/10.17877/de290r-4817" @default.
- W289958154 hasPublicationYear "2012" @default.
- W289958154 type Work @default.
- W289958154 sameAs 289958154 @default.
- W289958154 citedByCount "8" @default.
- W289958154 countsByYear W2899581542013 @default.
- W289958154 countsByYear W2899581542014 @default.
- W289958154 countsByYear W2899581542015 @default.
- W289958154 countsByYear W2899581542019 @default.
- W289958154 countsByYear W2899581542021 @default.
- W289958154 countsByYear W2899581542022 @default.
- W289958154 crossrefType "journal-article" @default.
- W289958154 hasAuthorship W289958154A5037058130 @default.
- W289958154 hasConcept C111919701 @default.
- W289958154 hasConcept C113843644 @default.
- W289958154 hasConcept C119857082 @default.
- W289958154 hasConcept C120314980 @default.
- W289958154 hasConcept C129307140 @default.
- W289958154 hasConcept C136764020 @default.
- W289958154 hasConcept C154504017 @default.
- W289958154 hasConcept C154945302 @default.
- W289958154 hasConcept C157915830 @default.
- W289958154 hasConcept C173608175 @default.