Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899592613> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2899592613 endingPage "361" @default.
- W2899592613 startingPage "350" @default.
- W2899592613 abstract "Data heterogeneity is one of the big challenges in modern data analysis caused by the effects of unknown/unwanted factors introduced during data collection procedures. It will cause spurious estimation of variable effects when traditional methods are applied for feature selection which simply assume that data samples are independently and identically distributed. Although some existing statistical models can evaluate more accurately the significance of each variable by estimating and including unknown factors as covariates, they are categorized as filter methods suffering from variable redundancy and lack of predictability. Therefore, we propose an embedded feature selection method from a sparse learning perspective capable of adjusting unknown heterogeneity. Its performance is investigated by evaluating the classification performance using the selected features in multi-class classification problems. Benefitting from the effective adjustment of unknown heterogeneity and model selection strategy, the experimental results on synthetic data and three real-world benchmark data sets have shown that our method can achieve consistent superiority over several conventional embedded methods and existing statistical models." @default.
- W2899592613 created "2018-11-16" @default.
- W2899592613 creator A5078532329 @default.
- W2899592613 date "2019-04-01" @default.
- W2899592613 modified "2023-10-16" @default.
- W2899592613 title "Embedded feature selection accounting for unknown data heterogeneity" @default.
- W2899592613 cites W1970119584 @default.
- W2899592613 cites W1975900269 @default.
- W2899592613 cites W1988881859 @default.
- W2899592613 cites W2006262045 @default.
- W2899592613 cites W2027717478 @default.
- W2899592613 cites W2043080228 @default.
- W2899592613 cites W2053478107 @default.
- W2899592613 cites W2056392803 @default.
- W2899592613 cites W2068320780 @default.
- W2899592613 cites W2078381696 @default.
- W2899592613 cites W2089322632 @default.
- W2899592613 cites W2114060717 @default.
- W2899592613 cites W2117553576 @default.
- W2899592613 cites W2137499573 @default.
- W2899592613 cites W2138019504 @default.
- W2899592613 cites W2140345723 @default.
- W2899592613 cites W2257217404 @default.
- W2899592613 cites W2323665732 @default.
- W2899592613 cites W2343897680 @default.
- W2899592613 cites W2468540678 @default.
- W2899592613 doi "https://doi.org/10.1016/j.eswa.2018.11.006" @default.
- W2899592613 hasPublicationYear "2019" @default.
- W2899592613 type Work @default.
- W2899592613 sameAs 2899592613 @default.
- W2899592613 citedByCount "37" @default.
- W2899592613 countsByYear W28995926132019 @default.
- W2899592613 countsByYear W28995926132020 @default.
- W2899592613 countsByYear W28995926132021 @default.
- W2899592613 countsByYear W28995926132022 @default.
- W2899592613 countsByYear W28995926132023 @default.
- W2899592613 crossrefType "journal-article" @default.
- W2899592613 hasAuthorship W2899592613A5078532329 @default.
- W2899592613 hasConcept C119043178 @default.
- W2899592613 hasConcept C119857082 @default.
- W2899592613 hasConcept C124101348 @default.
- W2899592613 hasConcept C134306372 @default.
- W2899592613 hasConcept C138885662 @default.
- W2899592613 hasConcept C148483581 @default.
- W2899592613 hasConcept C154945302 @default.
- W2899592613 hasConcept C182365436 @default.
- W2899592613 hasConcept C2776401178 @default.
- W2899592613 hasConcept C33923547 @default.
- W2899592613 hasConcept C41008148 @default.
- W2899592613 hasConcept C41895202 @default.
- W2899592613 hasConcept C97256817 @default.
- W2899592613 hasConceptScore W2899592613C119043178 @default.
- W2899592613 hasConceptScore W2899592613C119857082 @default.
- W2899592613 hasConceptScore W2899592613C124101348 @default.
- W2899592613 hasConceptScore W2899592613C134306372 @default.
- W2899592613 hasConceptScore W2899592613C138885662 @default.
- W2899592613 hasConceptScore W2899592613C148483581 @default.
- W2899592613 hasConceptScore W2899592613C154945302 @default.
- W2899592613 hasConceptScore W2899592613C182365436 @default.
- W2899592613 hasConceptScore W2899592613C2776401178 @default.
- W2899592613 hasConceptScore W2899592613C33923547 @default.
- W2899592613 hasConceptScore W2899592613C41008148 @default.
- W2899592613 hasConceptScore W2899592613C41895202 @default.
- W2899592613 hasConceptScore W2899592613C97256817 @default.
- W2899592613 hasFunder F4320321001 @default.
- W2899592613 hasLocation W28995926131 @default.
- W2899592613 hasOpenAccess W2899592613 @default.
- W2899592613 hasPrimaryLocation W28995926131 @default.
- W2899592613 hasRelatedWork W128985311 @default.
- W2899592613 hasRelatedWork W2115003020 @default.
- W2899592613 hasRelatedWork W2961085424 @default.
- W2899592613 hasRelatedWork W3087493185 @default.
- W2899592613 hasRelatedWork W3163334550 @default.
- W2899592613 hasRelatedWork W3200179079 @default.
- W2899592613 hasRelatedWork W4225915909 @default.
- W2899592613 hasRelatedWork W4293525103 @default.
- W2899592613 hasRelatedWork W4384944415 @default.
- W2899592613 hasRelatedWork W2256550063 @default.
- W2899592613 hasVolume "119" @default.
- W2899592613 isParatext "false" @default.
- W2899592613 isRetracted "false" @default.
- W2899592613 magId "2899592613" @default.
- W2899592613 workType "article" @default.