Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899592805> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2899592805 endingPage "S84" @default.
- W2899592805 startingPage "S84" @default.
- W2899592805 abstract "Machine-learning (ML) consist of developing algorithms that can generate output predictions based on learning from input data. This review aims to synthesize available studies comparing ML to traditional methods in the prediction of disease outcomes and diagnosis. A systematic literature review was conducted, looking at interventional studies comparing the performance of ML to traditional statistical methods and/or the performance of different ML methods on the ability to predict diagnosis and/or disease outcomes. Studies were included if they assessed any comparison of the application of different machine-learning models (with traditional methods or other type of machine-learning models) in diagnosis or outcomes prediction. In total, 19 studies were identified, 12 comparing machine-learning models with traditional methods while 7 studies compared different machine learning models. 11 studies focused on applying ML methods in the prediction of health outcomes and 8 on machine-learning models as diagnostic methods. Therapeutic area with most studied applications was neurology (n=4) followed by oncology and ophthalmology (n=3 each). Applications of ML methods were also assessed in immunology, hepathology, pulmonology, dermatology, critical care and infectious diseases. Random Forest models and Support Vector models were the most frequent type of ML models used, with 8 models each. All the studies comparing machine-learning models with traditional methods of diagnosis or outcomes prediction demonstrated that ML models achieved superior results in sensitivity (18.82% to 29.38%), specificity (17% to 28.08%) and accuracy (10% to 12%) as well as other specific outcomes. The studies identified in this review demonstrated that ML models are associated with increased value in diagnosis and outcomes prediction. Further model development and training with larger datasets may improve the predictive power of machine-learning methods." @default.
- W2899592805 created "2018-11-16" @default.
- W2899592805 creator A5001704674 @default.
- W2899592805 creator A5025571766 @default.
- W2899592805 creator A5034107071 @default.
- W2899592805 date "2018-09-01" @default.
- W2899592805 modified "2023-09-29" @default.
- W2899592805 title "Applications of Artificial Intelligence Technologies in Healthcare: A Systematic Literature Review" @default.
- W2899592805 doi "https://doi.org/10.1016/j.jval.2018.07.629" @default.
- W2899592805 hasPublicationYear "2018" @default.
- W2899592805 type Work @default.
- W2899592805 sameAs 2899592805 @default.
- W2899592805 citedByCount "5" @default.
- W2899592805 countsByYear W28995928052019 @default.
- W2899592805 countsByYear W28995928052020 @default.
- W2899592805 countsByYear W28995928052022 @default.
- W2899592805 countsByYear W28995928052023 @default.
- W2899592805 crossrefType "journal-article" @default.
- W2899592805 hasAuthorship W2899592805A5001704674 @default.
- W2899592805 hasAuthorship W2899592805A5025571766 @default.
- W2899592805 hasAuthorship W2899592805A5034107071 @default.
- W2899592805 hasBestOaLocation W28995928051 @default.
- W2899592805 hasConcept C119857082 @default.
- W2899592805 hasConcept C12267149 @default.
- W2899592805 hasConcept C154945302 @default.
- W2899592805 hasConcept C160735492 @default.
- W2899592805 hasConcept C162324750 @default.
- W2899592805 hasConcept C169258074 @default.
- W2899592805 hasConcept C17744445 @default.
- W2899592805 hasConcept C189708586 @default.
- W2899592805 hasConcept C199539241 @default.
- W2899592805 hasConcept C2779473830 @default.
- W2899592805 hasConcept C41008148 @default.
- W2899592805 hasConcept C50522688 @default.
- W2899592805 hasConcept C50644808 @default.
- W2899592805 hasConcept C71924100 @default.
- W2899592805 hasConceptScore W2899592805C119857082 @default.
- W2899592805 hasConceptScore W2899592805C12267149 @default.
- W2899592805 hasConceptScore W2899592805C154945302 @default.
- W2899592805 hasConceptScore W2899592805C160735492 @default.
- W2899592805 hasConceptScore W2899592805C162324750 @default.
- W2899592805 hasConceptScore W2899592805C169258074 @default.
- W2899592805 hasConceptScore W2899592805C17744445 @default.
- W2899592805 hasConceptScore W2899592805C189708586 @default.
- W2899592805 hasConceptScore W2899592805C199539241 @default.
- W2899592805 hasConceptScore W2899592805C2779473830 @default.
- W2899592805 hasConceptScore W2899592805C41008148 @default.
- W2899592805 hasConceptScore W2899592805C50522688 @default.
- W2899592805 hasConceptScore W2899592805C50644808 @default.
- W2899592805 hasConceptScore W2899592805C71924100 @default.
- W2899592805 hasLocation W28995928051 @default.
- W2899592805 hasOpenAccess W2899592805 @default.
- W2899592805 hasPrimaryLocation W28995928051 @default.
- W2899592805 hasRelatedWork W2979979539 @default.
- W2899592805 hasRelatedWork W2985924212 @default.
- W2899592805 hasRelatedWork W3004897296 @default.
- W2899592805 hasRelatedWork W3127425528 @default.
- W2899592805 hasRelatedWork W3195168932 @default.
- W2899592805 hasRelatedWork W4200370911 @default.
- W2899592805 hasRelatedWork W4205958290 @default.
- W2899592805 hasRelatedWork W4311106074 @default.
- W2899592805 hasRelatedWork W4320483443 @default.
- W2899592805 hasRelatedWork W4321636153 @default.
- W2899592805 hasVolume "21" @default.
- W2899592805 isParatext "false" @default.
- W2899592805 isRetracted "false" @default.
- W2899592805 magId "2899592805" @default.
- W2899592805 workType "article" @default.