Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899683012> ?p ?o ?g. }
- W2899683012 endingPage "1149" @default.
- W2899683012 startingPage "1139" @default.
- W2899683012 abstract "Histopathological examination is today's gold standard for cancer diagnosis. However, this task is time consuming and prone to errors as it requires a detailed visual inspection and interpretation of a pathologist. Digital pathology aims at alleviating these problems by providing computerized methods that quantitatively analyze digitized histopathological tissue images. The performance of these methods mainly relies on the features that they use, and thus, their success strictly depends on the ability of these features by successfully quantifying the histopathology domain. With this motivation, this paper presents a new unsupervised feature extractor for effective representation and classification of histopathological tissue images. This feature extractor has three main contributions: First, it proposes to identify salient subregions in an image, based on domain-specific prior knowledge, and to quantify the image by employing only the characteristics of these subregions instead of considering the characteristics of all image locations. Second, it introduces a new deep learning-based technique that quantizes the salient subregions by extracting a set of features directly learned on image data and uses the distribution of these quantizations for image representation and classification. To this end, the proposed deep learning-based technique constructs a deep belief network of the restricted Boltzmann machines (RBMs), defines the activation values of the hidden unit nodes in the final RBM as the features, and learns the quantizations by clustering these features in an unsupervised way. Third, this extractor is the first example for successfully using the restricted Boltzmann machines in the domain of histopathological image analysis. Our experiments on microscopic colon tissue images reveal that the proposed feature extractor is effective to obtain more accurate classification results compared to its counterparts." @default.
- W2899683012 created "2018-11-16" @default.
- W2899683012 creator A5006475168 @default.
- W2899683012 creator A5043106100 @default.
- W2899683012 date "2019-05-01" @default.
- W2899683012 modified "2023-10-01" @default.
- W2899683012 title "Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images" @default.
- W2899683012 cites W1582640985 @default.
- W2899683012 cites W1608218651 @default.
- W2899683012 cites W168227540 @default.
- W2899683012 cites W1932469787 @default.
- W2899683012 cites W2003672935 @default.
- W2899683012 cites W2030041075 @default.
- W2899683012 cites W2039758605 @default.
- W2899683012 cites W2043096692 @default.
- W2899683012 cites W2079385922 @default.
- W2899683012 cites W2080743883 @default.
- W2899683012 cites W2084185625 @default.
- W2899683012 cites W2084676687 @default.
- W2899683012 cites W2097117768 @default.
- W2899683012 cites W2100495367 @default.
- W2899683012 cites W2103061399 @default.
- W2899683012 cites W2103243046 @default.
- W2899683012 cites W2116064496 @default.
- W2899683012 cites W2134647348 @default.
- W2899683012 cites W2152942156 @default.
- W2899683012 cites W2153635508 @default.
- W2899683012 cites W2159551006 @default.
- W2899683012 cites W2160633263 @default.
- W2899683012 cites W2248620004 @default.
- W2899683012 cites W2269649163 @default.
- W2899683012 cites W2282915343 @default.
- W2899683012 cites W2312404985 @default.
- W2899683012 cites W2504150216 @default.
- W2899683012 cites W2511901433 @default.
- W2899683012 cites W2547944663 @default.
- W2899683012 cites W2548342201 @default.
- W2899683012 cites W2556697445 @default.
- W2899683012 cites W2592905743 @default.
- W2899683012 cites W2609584387 @default.
- W2899683012 cites W2613181504 @default.
- W2899683012 cites W2693096534 @default.
- W2899683012 cites W2753886374 @default.
- W2899683012 cites W2772723798 @default.
- W2899683012 cites W2789755511 @default.
- W2899683012 cites W2919115771 @default.
- W2899683012 cites W2962898707 @default.
- W2899683012 cites W2962934138 @default.
- W2899683012 doi "https://doi.org/10.1109/tmi.2018.2879369" @default.
- W2899683012 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30403624" @default.
- W2899683012 hasPublicationYear "2019" @default.
- W2899683012 type Work @default.
- W2899683012 sameAs 2899683012 @default.
- W2899683012 citedByCount "75" @default.
- W2899683012 countsByYear W28996830122018 @default.
- W2899683012 countsByYear W28996830122019 @default.
- W2899683012 countsByYear W28996830122020 @default.
- W2899683012 countsByYear W28996830122021 @default.
- W2899683012 countsByYear W28996830122022 @default.
- W2899683012 countsByYear W28996830122023 @default.
- W2899683012 crossrefType "journal-article" @default.
- W2899683012 hasAuthorship W2899683012A5006475168 @default.
- W2899683012 hasAuthorship W2899683012A5043106100 @default.
- W2899683012 hasBestOaLocation W28996830122 @default.
- W2899683012 hasConcept C108583219 @default.
- W2899683012 hasConcept C117978034 @default.
- W2899683012 hasConcept C127413603 @default.
- W2899683012 hasConcept C134306372 @default.
- W2899683012 hasConcept C138885662 @default.
- W2899683012 hasConcept C153180895 @default.
- W2899683012 hasConcept C154945302 @default.
- W2899683012 hasConcept C199354608 @default.
- W2899683012 hasConcept C21880701 @default.
- W2899683012 hasConcept C2776401178 @default.
- W2899683012 hasConcept C2780719617 @default.
- W2899683012 hasConcept C31972630 @default.
- W2899683012 hasConcept C33923547 @default.
- W2899683012 hasConcept C36503486 @default.
- W2899683012 hasConcept C41008148 @default.
- W2899683012 hasConcept C41895202 @default.
- W2899683012 hasConcept C52622490 @default.
- W2899683012 hasConcept C59404180 @default.
- W2899683012 hasConcept C73555534 @default.
- W2899683012 hasConcept C8038995 @default.
- W2899683012 hasConceptScore W2899683012C108583219 @default.
- W2899683012 hasConceptScore W2899683012C117978034 @default.
- W2899683012 hasConceptScore W2899683012C127413603 @default.
- W2899683012 hasConceptScore W2899683012C134306372 @default.
- W2899683012 hasConceptScore W2899683012C138885662 @default.
- W2899683012 hasConceptScore W2899683012C153180895 @default.
- W2899683012 hasConceptScore W2899683012C154945302 @default.
- W2899683012 hasConceptScore W2899683012C199354608 @default.
- W2899683012 hasConceptScore W2899683012C21880701 @default.
- W2899683012 hasConceptScore W2899683012C2776401178 @default.
- W2899683012 hasConceptScore W2899683012C2780719617 @default.
- W2899683012 hasConceptScore W2899683012C31972630 @default.
- W2899683012 hasConceptScore W2899683012C33923547 @default.
- W2899683012 hasConceptScore W2899683012C36503486 @default.