Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899689631> ?p ?o ?g. }
- W2899689631 endingPage "225" @default.
- W2899689631 startingPage "213" @default.
- W2899689631 abstract "Because of the rapid changes in traffic conditions caused by various circumstances, such as road construction and traffic jams, the distribution of the traffic volume data changes over time. The performances of traditional traffic volume prediction methods, with fixed model types and parameter settings, suffer from gradual degradation during these concept drift processes. In this paper, a novel incremental regression framework under the concept drifting environment is proposed, with ensemble learning as the major solution for updating the distribution representation. First, we transform the regression problem of traffic volume forecasting into a binary classification problem. Second, loss functions for incremental and ensemble learning are constructed based on this transformation. Finally, the incremental learning of the regression function is formulated as stepwise updating of the decision hyperplane. The experimental results show that our method is more stable and accurate than the existing incremental and ensemble regression methods." @default.
- W2899689631 created "2018-11-16" @default.
- W2899689631 creator A5001435169 @default.
- W2899689631 creator A5008381768 @default.
- W2899689631 creator A5025199085 @default.
- W2899689631 creator A5073146766 @default.
- W2899689631 creator A5085655988 @default.
- W2899689631 date "2019-01-01" @default.
- W2899689631 modified "2023-10-13" @default.
- W2899689631 title "Short-term traffic volume prediction by ensemble learning in concept drifting environments" @default.
- W2899689631 cites W1972340269 @default.
- W2899689631 cites W1973943669 @default.
- W2899689631 cites W1982978808 @default.
- W2899689631 cites W1984969638 @default.
- W2899689631 cites W1995883358 @default.
- W2899689631 cites W1996320907 @default.
- W2899689631 cites W2012179841 @default.
- W2899689631 cites W2032131451 @default.
- W2899689631 cites W2040297119 @default.
- W2899689631 cites W2041755017 @default.
- W2899689631 cites W2057949243 @default.
- W2899689631 cites W2078931793 @default.
- W2899689631 cites W2083238230 @default.
- W2899689631 cites W2089026794 @default.
- W2899689631 cites W2105462754 @default.
- W2899689631 cites W2119460626 @default.
- W2899689631 cites W2123706197 @default.
- W2899689631 cites W2131739422 @default.
- W2899689631 cites W2150152686 @default.
- W2899689631 cites W2160512933 @default.
- W2899689631 cites W2164364875 @default.
- W2899689631 cites W2175821123 @default.
- W2899689631 cites W2283721597 @default.
- W2899689631 cites W2358981474 @default.
- W2899689631 cites W2460405629 @default.
- W2899689631 cites W2582444947 @default.
- W2899689631 cites W2798024831 @default.
- W2899689631 cites W2041041500 @default.
- W2899689631 cites W2363932104 @default.
- W2899689631 doi "https://doi.org/10.1016/j.knosys.2018.10.037" @default.
- W2899689631 hasPublicationYear "2019" @default.
- W2899689631 type Work @default.
- W2899689631 sameAs 2899689631 @default.
- W2899689631 citedByCount "42" @default.
- W2899689631 countsByYear W28996896312019 @default.
- W2899689631 countsByYear W28996896312020 @default.
- W2899689631 countsByYear W28996896312021 @default.
- W2899689631 countsByYear W28996896312022 @default.
- W2899689631 countsByYear W28996896312023 @default.
- W2899689631 crossrefType "journal-article" @default.
- W2899689631 hasAuthorship W2899689631A5001435169 @default.
- W2899689631 hasAuthorship W2899689631A5008381768 @default.
- W2899689631 hasAuthorship W2899689631A5025199085 @default.
- W2899689631 hasAuthorship W2899689631A5073146766 @default.
- W2899689631 hasAuthorship W2899689631A5085655988 @default.
- W2899689631 hasConcept C104317684 @default.
- W2899689631 hasConcept C105795698 @default.
- W2899689631 hasConcept C119857082 @default.
- W2899689631 hasConcept C119898033 @default.
- W2899689631 hasConcept C121332964 @default.
- W2899689631 hasConcept C124101348 @default.
- W2899689631 hasConcept C152877465 @default.
- W2899689631 hasConcept C154945302 @default.
- W2899689631 hasConcept C170964787 @default.
- W2899689631 hasConcept C185592680 @default.
- W2899689631 hasConcept C204241405 @default.
- W2899689631 hasConcept C20556612 @default.
- W2899689631 hasConcept C2524010 @default.
- W2899689631 hasConcept C33923547 @default.
- W2899689631 hasConcept C41008148 @default.
- W2899689631 hasConcept C45942800 @default.
- W2899689631 hasConcept C55493867 @default.
- W2899689631 hasConcept C60777511 @default.
- W2899689631 hasConcept C61797465 @default.
- W2899689631 hasConcept C62520636 @default.
- W2899689631 hasConcept C68693459 @default.
- W2899689631 hasConcept C83546350 @default.
- W2899689631 hasConcept C89198739 @default.
- W2899689631 hasConceptScore W2899689631C104317684 @default.
- W2899689631 hasConceptScore W2899689631C105795698 @default.
- W2899689631 hasConceptScore W2899689631C119857082 @default.
- W2899689631 hasConceptScore W2899689631C119898033 @default.
- W2899689631 hasConceptScore W2899689631C121332964 @default.
- W2899689631 hasConceptScore W2899689631C124101348 @default.
- W2899689631 hasConceptScore W2899689631C152877465 @default.
- W2899689631 hasConceptScore W2899689631C154945302 @default.
- W2899689631 hasConceptScore W2899689631C170964787 @default.
- W2899689631 hasConceptScore W2899689631C185592680 @default.
- W2899689631 hasConceptScore W2899689631C204241405 @default.
- W2899689631 hasConceptScore W2899689631C20556612 @default.
- W2899689631 hasConceptScore W2899689631C2524010 @default.
- W2899689631 hasConceptScore W2899689631C33923547 @default.
- W2899689631 hasConceptScore W2899689631C41008148 @default.
- W2899689631 hasConceptScore W2899689631C45942800 @default.
- W2899689631 hasConceptScore W2899689631C55493867 @default.
- W2899689631 hasConceptScore W2899689631C60777511 @default.
- W2899689631 hasConceptScore W2899689631C61797465 @default.
- W2899689631 hasConceptScore W2899689631C62520636 @default.