Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899763763> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2899763763 abstract "For many applications in the field of computer assisted surgery, such as providing the position of a tumor, specifying the most probable tool required next by the surgeon or determining the remaining duration of surgery, methods for surgical workflow analysis are a prerequisite. Often machine learning based approaches serve as basis for surgical workflow analysis. In general machine learning algorithms, such as convolutional neural networks (CNN), require large amounts of labeled data. While data is often available in abundance, many tasks in surgical workflow analysis need data annotated by domain experts, making it difficult to obtain a sufficient amount of annotations. The aim of using active learning to train a machine learning model is to reduce the annotation effort. Active learning methods determine which unlabeled data points would provide the most information according to some metric, such as prediction uncertainty. Experts will then be asked to only annotate these data points. The model is then retrained with the new data and used to select further data for annotation. Recently, active learning has been applied to CNN by means of Deep Bayesian Networks (DBN). These networks make it possible to assign uncertainties to predictions. In this paper, we present a DBN-based active learning approach adapted for image-based surgical workflow analysis task. Furthermore, by using a recurrent architecture, we extend this network to video-based surgical workflow analysis. We evaluate these approaches on the Cholec80 dataset by performing instrument presence detection and surgical phase segmentation. Here we are able to show that using a DBN-based active learning approach for selecting what data points to annotate next outperforms a baseline based on randomly selecting data points." @default.
- W2899763763 created "2018-11-16" @default.
- W2899763763 creator A5003648994 @default.
- W2899763763 creator A5008345394 @default.
- W2899763763 creator A5014919291 @default.
- W2899763763 creator A5027275363 @default.
- W2899763763 creator A5034437528 @default.
- W2899763763 creator A5052772677 @default.
- W2899763763 creator A5056857657 @default.
- W2899763763 creator A5070201649 @default.
- W2899763763 creator A5086965439 @default.
- W2899763763 date "2018-11-08" @default.
- W2899763763 modified "2023-09-27" @default.
- W2899763763 title "Active Learning using Deep Bayesian Networks for Surgical Workflow Analysis" @default.
- W2899763763 cites W1522301498 @default.
- W2899763763 cites W2016545368 @default.
- W2899763763 cites W2047607378 @default.
- W2899763763 cites W2064675550 @default.
- W2899763763 cites W2100592824 @default.
- W2899763763 cites W2163605009 @default.
- W2899763763 cites W2168571645 @default.
- W2899763763 cites W2266464013 @default.
- W2899763763 cites W2488552272 @default.
- W2899763763 cites W2570764145 @default.
- W2899763763 cites W2592038391 @default.
- W2899763763 cites W2597787948 @default.
- W2899763763 cites W2751405240 @default.
- W2899763763 cites W2777273430 @default.
- W2899763763 cites W2804845319 @default.
- W2899763763 cites W2884036902 @default.
- W2899763763 cites W2895654826 @default.
- W2899763763 cites W2962914239 @default.
- W2899763763 cites W2962936819 @default.
- W2899763763 cites W2963266340 @default.
- W2899763763 cites W2964212410 @default.
- W2899763763 cites W3102408484 @default.
- W2899763763 cites W1857789879 @default.
- W2899763763 hasPublicationYear "2018" @default.
- W2899763763 type Work @default.
- W2899763763 sameAs 2899763763 @default.
- W2899763763 citedByCount "0" @default.
- W2899763763 crossrefType "posted-content" @default.
- W2899763763 hasAuthorship W2899763763A5003648994 @default.
- W2899763763 hasAuthorship W2899763763A5008345394 @default.
- W2899763763 hasAuthorship W2899763763A5014919291 @default.
- W2899763763 hasAuthorship W2899763763A5027275363 @default.
- W2899763763 hasAuthorship W2899763763A5034437528 @default.
- W2899763763 hasAuthorship W2899763763A5052772677 @default.
- W2899763763 hasAuthorship W2899763763A5056857657 @default.
- W2899763763 hasAuthorship W2899763763A5070201649 @default.
- W2899763763 hasAuthorship W2899763763A5086965439 @default.
- W2899763763 hasConcept C108583219 @default.
- W2899763763 hasConcept C119857082 @default.
- W2899763763 hasConcept C154945302 @default.
- W2899763763 hasConcept C177212765 @default.
- W2899763763 hasConcept C2776321320 @default.
- W2899763763 hasConcept C33724603 @default.
- W2899763763 hasConcept C41008148 @default.
- W2899763763 hasConcept C77088390 @default.
- W2899763763 hasConcept C81363708 @default.
- W2899763763 hasConcept C82142266 @default.
- W2899763763 hasConceptScore W2899763763C108583219 @default.
- W2899763763 hasConceptScore W2899763763C119857082 @default.
- W2899763763 hasConceptScore W2899763763C154945302 @default.
- W2899763763 hasConceptScore W2899763763C177212765 @default.
- W2899763763 hasConceptScore W2899763763C2776321320 @default.
- W2899763763 hasConceptScore W2899763763C33724603 @default.
- W2899763763 hasConceptScore W2899763763C41008148 @default.
- W2899763763 hasConceptScore W2899763763C77088390 @default.
- W2899763763 hasConceptScore W2899763763C81363708 @default.
- W2899763763 hasConceptScore W2899763763C82142266 @default.
- W2899763763 hasLocation W28997637631 @default.
- W2899763763 hasOpenAccess W2899763763 @default.
- W2899763763 hasPrimaryLocation W28997637631 @default.
- W2899763763 hasRelatedWork W130907108 @default.
- W2899763763 hasRelatedWork W1499276978 @default.
- W2899763763 hasRelatedWork W2117763124 @default.
- W2899763763 hasRelatedWork W2471138382 @default.
- W2899763763 hasRelatedWork W2770938853 @default.
- W2899763763 hasRelatedWork W2886049744 @default.
- W2899763763 hasRelatedWork W2963556008 @default.
- W2899763763 hasRelatedWork W2964283648 @default.
- W2899763763 hasRelatedWork W2982024402 @default.
- W2899763763 hasRelatedWork W3017782462 @default.
- W2899763763 hasRelatedWork W3043032886 @default.
- W2899763763 hasRelatedWork W3044331088 @default.
- W2899763763 hasRelatedWork W3100256147 @default.
- W2899763763 hasRelatedWork W3102408484 @default.
- W2899763763 hasRelatedWork W3105771849 @default.
- W2899763763 hasRelatedWork W3110000427 @default.
- W2899763763 hasRelatedWork W3114989016 @default.
- W2899763763 hasRelatedWork W3199773535 @default.
- W2899763763 hasRelatedWork W3201461751 @default.
- W2899763763 hasRelatedWork W3205711766 @default.
- W2899763763 isParatext "false" @default.
- W2899763763 isRetracted "false" @default.
- W2899763763 magId "2899763763" @default.
- W2899763763 workType "article" @default.