Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899771208> ?p ?o ?g. }
- W2899771208 endingPage "3029" @default.
- W2899771208 startingPage "3029" @default.
- W2899771208 abstract "Oil is an important energy commodity. The difficulties of forecasting oil prices stem from the nonlinearity and non-stationarity of their dynamics. However, the oil prices are closely correlated with global financial markets and economic conditions, which provides us with sufficient information to predict them. Traditional models are linear and parametric, and are not very effective in predicting oil prices. To address these problems, this study developed a new strategy. Deep (or hierarchical) multiple kernel learning (DMKL) was used to predict the oil price time series. Traditional methods from statistics and machine learning usually involve shallow models; however, they are unable to fully represent complex, compositional, and hierarchical data features. This explains why traditional methods fail to track oil price dynamics. This study aimed to solve this problem by combining deep learning and multiple kernel machines using information from oil, gold, and currency markets. DMKL is good at exploiting multiple information sources. It can effectively identify the relevant information and simultaneously select an apposite data representation. The kernels of DMKL were embedded in a directed acyclic graph (DAG), which is a deep model and efficient at representing complex and compositional data features. This provided a solid foundation for extracting the key features of oil price dynamics. By using real data for empirical testing, our new system robustly outperformed traditional models and significantly reduced the forecasting errors." @default.
- W2899771208 created "2018-11-16" @default.
- W2899771208 creator A5016379052 @default.
- W2899771208 creator A5045980590 @default.
- W2899771208 date "2018-11-05" @default.
- W2899771208 modified "2023-10-01" @default.
- W2899771208 title "Energy Commodity Price Forecasting with Deep Multiple Kernel Learning" @default.
- W2899771208 cites W1451471172 @default.
- W2899771208 cites W1513232892 @default.
- W2899771208 cites W1971967963 @default.
- W2899771208 cites W1986478348 @default.
- W2899771208 cites W2004463884 @default.
- W2899771208 cites W2020355555 @default.
- W2899771208 cites W2022572537 @default.
- W2899771208 cites W2049722240 @default.
- W2899771208 cites W2072880371 @default.
- W2899771208 cites W2076063813 @default.
- W2899771208 cites W2121970262 @default.
- W2899771208 cites W2557437185 @default.
- W2899771208 cites W2572501969 @default.
- W2899771208 cites W2782085727 @default.
- W2899771208 cites W2799586746 @default.
- W2899771208 cites W2800138630 @default.
- W2899771208 cites W2810273060 @default.
- W2899771208 cites W2883388482 @default.
- W2899771208 cites W2885631883 @default.
- W2899771208 cites W2886842078 @default.
- W2899771208 cites W2890151595 @default.
- W2899771208 cites W2890983154 @default.
- W2899771208 cites W2919115771 @default.
- W2899771208 doi "https://doi.org/10.3390/en11113029" @default.
- W2899771208 hasPublicationYear "2018" @default.
- W2899771208 type Work @default.
- W2899771208 sameAs 2899771208 @default.
- W2899771208 citedByCount "13" @default.
- W2899771208 countsByYear W28997712082019 @default.
- W2899771208 countsByYear W28997712082020 @default.
- W2899771208 countsByYear W28997712082021 @default.
- W2899771208 countsByYear W28997712082022 @default.
- W2899771208 countsByYear W28997712082023 @default.
- W2899771208 crossrefType "journal-article" @default.
- W2899771208 hasAuthorship W2899771208A5016379052 @default.
- W2899771208 hasAuthorship W2899771208A5045980590 @default.
- W2899771208 hasBestOaLocation W28997712081 @default.
- W2899771208 hasConcept C10138342 @default.
- W2899771208 hasConcept C108583219 @default.
- W2899771208 hasConcept C114614502 @default.
- W2899771208 hasConcept C119857082 @default.
- W2899771208 hasConcept C122280245 @default.
- W2899771208 hasConcept C12267149 @default.
- W2899771208 hasConcept C124101348 @default.
- W2899771208 hasConcept C149782125 @default.
- W2899771208 hasConcept C154945302 @default.
- W2899771208 hasConcept C162324750 @default.
- W2899771208 hasConcept C2776879701 @default.
- W2899771208 hasConcept C2779439359 @default.
- W2899771208 hasConcept C33923547 @default.
- W2899771208 hasConcept C41008148 @default.
- W2899771208 hasConcept C70784835 @default.
- W2899771208 hasConcept C74193536 @default.
- W2899771208 hasConcept C91602232 @default.
- W2899771208 hasConceptScore W2899771208C10138342 @default.
- W2899771208 hasConceptScore W2899771208C108583219 @default.
- W2899771208 hasConceptScore W2899771208C114614502 @default.
- W2899771208 hasConceptScore W2899771208C119857082 @default.
- W2899771208 hasConceptScore W2899771208C122280245 @default.
- W2899771208 hasConceptScore W2899771208C12267149 @default.
- W2899771208 hasConceptScore W2899771208C124101348 @default.
- W2899771208 hasConceptScore W2899771208C149782125 @default.
- W2899771208 hasConceptScore W2899771208C154945302 @default.
- W2899771208 hasConceptScore W2899771208C162324750 @default.
- W2899771208 hasConceptScore W2899771208C2776879701 @default.
- W2899771208 hasConceptScore W2899771208C2779439359 @default.
- W2899771208 hasConceptScore W2899771208C33923547 @default.
- W2899771208 hasConceptScore W2899771208C41008148 @default.
- W2899771208 hasConceptScore W2899771208C70784835 @default.
- W2899771208 hasConceptScore W2899771208C74193536 @default.
- W2899771208 hasConceptScore W2899771208C91602232 @default.
- W2899771208 hasIssue "11" @default.
- W2899771208 hasLocation W28997712081 @default.
- W2899771208 hasLocation W28997712082 @default.
- W2899771208 hasLocation W28997712083 @default.
- W2899771208 hasOpenAccess W2899771208 @default.
- W2899771208 hasPrimaryLocation W28997712081 @default.
- W2899771208 hasRelatedWork W2092483655 @default.
- W2899771208 hasRelatedWork W3014300295 @default.
- W2899771208 hasRelatedWork W3164822677 @default.
- W2899771208 hasRelatedWork W4223943233 @default.
- W2899771208 hasRelatedWork W4225161397 @default.
- W2899771208 hasRelatedWork W4312200629 @default.
- W2899771208 hasRelatedWork W4360585206 @default.
- W2899771208 hasRelatedWork W4364306694 @default.
- W2899771208 hasRelatedWork W4380075502 @default.
- W2899771208 hasRelatedWork W4380086463 @default.
- W2899771208 hasVolume "11" @default.
- W2899771208 isParatext "false" @default.
- W2899771208 isRetracted "false" @default.
- W2899771208 magId "2899771208" @default.