Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899790004> ?p ?o ?g. }
- W2899790004 abstract "Abstract The identification of oil and water layers (OWL) from well log data is an important task in petroleum exploration and engineering. At present, the commonly used methods for OWL identification are time-consuming, low accuracy or need better experience of researchers. Therefore, some machine learning methods have been developed to identify the lithology and OWL. Based on logging while drilling data, this paper optimizes machine learning methods to identify OWL while drilling. Recently, several computational algorithms have been used for OWL identification to improve the prediction accuracy. In this paper, we evaluate three popular machine learning methods, namely the one-against-rest support vector machine, one-against-one support vector machine, and random forest. First, we choose apposite training set data as a sample for model training. Then, GridSearch method was used to find the approximate range of reasonable parameters' value. And then using k-fold cross validation to optimize the final parameters and to avoid overfitting. Finally, choosing apposite test set data to verify the model. The method of using machine learning method to identify OWL while drilling has been successfully applied in Weibei oilfield. We select 1934 groups of well logging response data for 31 production wells. Among them, 198 groups of LWD data were selected as the test set data. Natural gamma, shale content, acoustic time difference, and deep-sensing logs were selected as input feature parameters. After GridSearch and 10-fold cross validation, the results suggest that random forest method is the best algorithm for supervised classification of OWL using well log data. The accuracy of the three classifiers after the calculation of the training set is greater than 90%, but their differences are relative large. For the test set, the calculated accuracy of the three classifiers is about 90%, with a small difference. The one-against-rest support vector machine classifier spends much more time than other methods. The one-against-one support vector machine classifier is the classifier which training set accuracy and test set accuracy are the lowest in three methods. Although all the calculation results have diffierences in accuracy of OWL identification, their accuracy is relatively high. For different reservoirs, taking into account the time cost and model calculation accuracy, we can use random forest and one-against-one support vector machine models to identify OWL in real time during drilling." @default.
- W2899790004 created "2018-11-16" @default.
- W2899790004 creator A5004183775 @default.
- W2899790004 creator A5043034128 @default.
- W2899790004 creator A5052221852 @default.
- W2899790004 creator A5052319916 @default.
- W2899790004 creator A5067991380 @default.
- W2899790004 creator A5079768155 @default.
- W2899790004 creator A5081370027 @default.
- W2899790004 date "2018-11-12" @default.
- W2899790004 modified "2023-09-23" @default.
- W2899790004 title "Optimization of Models for Rapid Identification of Oil and Water Layers During Drilling - A Win-Win Strategy Based on Machine Learning" @default.
- W2899790004 cites W1977504834 @default.
- W2899790004 cites W1997299870 @default.
- W2899790004 cites W2016451901 @default.
- W2899790004 cites W2021422272 @default.
- W2899790004 cites W2172000360 @default.
- W2899790004 cites W2227020508 @default.
- W2899790004 cites W2282312309 @default.
- W2899790004 cites W2551971519 @default.
- W2899790004 cites W2554767134 @default.
- W2899790004 cites W2590112372 @default.
- W2899790004 cites W2610339468 @default.
- W2899790004 cites W2763634520 @default.
- W2899790004 cites W2766259095 @default.
- W2899790004 cites W2789504404 @default.
- W2899790004 cites W2790106646 @default.
- W2899790004 cites W2791150000 @default.
- W2899790004 cites W2802412288 @default.
- W2899790004 cites W2911964244 @default.
- W2899790004 cites W2963100393 @default.
- W2899790004 cites W2964074215 @default.
- W2899790004 cites W4212883601 @default.
- W2899790004 doi "https://doi.org/10.2118/192833-ms" @default.
- W2899790004 hasPublicationYear "2018" @default.
- W2899790004 type Work @default.
- W2899790004 sameAs 2899790004 @default.
- W2899790004 citedByCount "4" @default.
- W2899790004 countsByYear W28997900042021 @default.
- W2899790004 countsByYear W28997900042022 @default.
- W2899790004 crossrefType "proceedings-article" @default.
- W2899790004 hasAuthorship W2899790004A5004183775 @default.
- W2899790004 hasAuthorship W2899790004A5043034128 @default.
- W2899790004 hasAuthorship W2899790004A5052221852 @default.
- W2899790004 hasAuthorship W2899790004A5052319916 @default.
- W2899790004 hasAuthorship W2899790004A5067991380 @default.
- W2899790004 hasAuthorship W2899790004A5079768155 @default.
- W2899790004 hasAuthorship W2899790004A5081370027 @default.
- W2899790004 hasConcept C108583219 @default.
- W2899790004 hasConcept C116834253 @default.
- W2899790004 hasConcept C119857082 @default.
- W2899790004 hasConcept C12267149 @default.
- W2899790004 hasConcept C124101348 @default.
- W2899790004 hasConcept C154945302 @default.
- W2899790004 hasConcept C16910744 @default.
- W2899790004 hasConcept C169258074 @default.
- W2899790004 hasConcept C169903167 @default.
- W2899790004 hasConcept C177264268 @default.
- W2899790004 hasConcept C199360897 @default.
- W2899790004 hasConcept C22019652 @default.
- W2899790004 hasConcept C27181475 @default.
- W2899790004 hasConcept C2778827112 @default.
- W2899790004 hasConcept C41008148 @default.
- W2899790004 hasConcept C50644808 @default.
- W2899790004 hasConcept C58489278 @default.
- W2899790004 hasConcept C59822182 @default.
- W2899790004 hasConcept C86803240 @default.
- W2899790004 hasConceptScore W2899790004C108583219 @default.
- W2899790004 hasConceptScore W2899790004C116834253 @default.
- W2899790004 hasConceptScore W2899790004C119857082 @default.
- W2899790004 hasConceptScore W2899790004C12267149 @default.
- W2899790004 hasConceptScore W2899790004C124101348 @default.
- W2899790004 hasConceptScore W2899790004C154945302 @default.
- W2899790004 hasConceptScore W2899790004C16910744 @default.
- W2899790004 hasConceptScore W2899790004C169258074 @default.
- W2899790004 hasConceptScore W2899790004C169903167 @default.
- W2899790004 hasConceptScore W2899790004C177264268 @default.
- W2899790004 hasConceptScore W2899790004C199360897 @default.
- W2899790004 hasConceptScore W2899790004C22019652 @default.
- W2899790004 hasConceptScore W2899790004C27181475 @default.
- W2899790004 hasConceptScore W2899790004C2778827112 @default.
- W2899790004 hasConceptScore W2899790004C41008148 @default.
- W2899790004 hasConceptScore W2899790004C50644808 @default.
- W2899790004 hasConceptScore W2899790004C58489278 @default.
- W2899790004 hasConceptScore W2899790004C59822182 @default.
- W2899790004 hasConceptScore W2899790004C86803240 @default.
- W2899790004 hasLocation W28997900041 @default.
- W2899790004 hasOpenAccess W2899790004 @default.
- W2899790004 hasPrimaryLocation W28997900041 @default.
- W2899790004 hasRelatedWork W146936891 @default.
- W2899790004 hasRelatedWork W1558137693 @default.
- W2899790004 hasRelatedWork W1945976002 @default.
- W2899790004 hasRelatedWork W2325486711 @default.
- W2899790004 hasRelatedWork W2392228066 @default.
- W2899790004 hasRelatedWork W2806504660 @default.
- W2899790004 hasRelatedWork W2978367629 @default.
- W2899790004 hasRelatedWork W4244737289 @default.
- W2899790004 hasRelatedWork W4252072878 @default.
- W2899790004 hasRelatedWork W2465382585 @default.
- W2899790004 isParatext "false" @default.