Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899823062> ?p ?o ?g. }
- W2899823062 endingPage "73" @default.
- W2899823062 startingPage "66" @default.
- W2899823062 abstract "Using computational techniques especially deep learning methods to facilitate and enhance cancer detection and diagnosis is a promising and important area. Nowadays, gene expression data has been widely used to train an effective deep neural network for precise cancer diagnosis. However, if a particular tumor has insufficient gene expressions, the trained deep neural networks may lead to a bad cancer diagnosis performance. In this paper, we propose a novel multi-task deep learning (MTDL) method to solve the data insufficiency problem. Since MTDL leverages the knowledge among the expression data of multiple cancers to learn a more stable representation for rare cancers, it can boost cancer diagnosis performance even if their expression data are inadequate. The experimental results show that MTDL significantly improves the performance of diagnosing every type of cancer when it learns from the aggregation of the expression data of twelve types of cancers." @default.
- W2899823062 created "2018-11-16" @default.
- W2899823062 creator A5008190964 @default.
- W2899823062 creator A5012559241 @default.
- W2899823062 creator A5029400872 @default.
- W2899823062 creator A5058424158 @default.
- W2899823062 creator A5069241620 @default.
- W2899823062 creator A5088374149 @default.
- W2899823062 date "2019-07-01" @default.
- W2899823062 modified "2023-10-15" @default.
- W2899823062 title "Multi-task deep convolutional neural network for cancer diagnosis" @default.
- W2899823062 cites W1925417509 @default.
- W2899823062 cites W1978336444 @default.
- W2899823062 cites W1982554717 @default.
- W2899823062 cites W1999463736 @default.
- W2899823062 cites W2011333145 @default.
- W2899823062 cites W2031326491 @default.
- W2899823062 cites W2038082731 @default.
- W2899823062 cites W2040895929 @default.
- W2899823062 cites W2042799353 @default.
- W2899823062 cites W2050341986 @default.
- W2899823062 cites W2058824260 @default.
- W2899823062 cites W2075103606 @default.
- W2899823062 cites W2075746486 @default.
- W2899823062 cites W2079923725 @default.
- W2899823062 cites W2087684630 @default.
- W2899823062 cites W2088851040 @default.
- W2899823062 cites W2089894294 @default.
- W2899823062 cites W2112634639 @default.
- W2899823062 cites W2121281940 @default.
- W2899823062 cites W2133219389 @default.
- W2899823062 cites W2134389439 @default.
- W2899823062 cites W2143426320 @default.
- W2899823062 cites W2149788826 @default.
- W2899823062 cites W2150690129 @default.
- W2899823062 cites W2155151262 @default.
- W2899823062 cites W2159400887 @default.
- W2899823062 cites W2165698076 @default.
- W2899823062 cites W2400262625 @default.
- W2899823062 cites W2507470109 @default.
- W2899823062 cites W2513443267 @default.
- W2899823062 cites W2527824850 @default.
- W2899823062 cites W2559553341 @default.
- W2899823062 cites W2737362155 @default.
- W2899823062 cites W2767016695 @default.
- W2899823062 cites W2791514042 @default.
- W2899823062 cites W2913340405 @default.
- W2899823062 cites W3103850820 @default.
- W2899823062 doi "https://doi.org/10.1016/j.neucom.2018.06.084" @default.
- W2899823062 hasPublicationYear "2019" @default.
- W2899823062 type Work @default.
- W2899823062 sameAs 2899823062 @default.
- W2899823062 citedByCount "48" @default.
- W2899823062 countsByYear W28998230622019 @default.
- W2899823062 countsByYear W28998230622020 @default.
- W2899823062 countsByYear W28998230622021 @default.
- W2899823062 countsByYear W28998230622022 @default.
- W2899823062 countsByYear W28998230622023 @default.
- W2899823062 crossrefType "journal-article" @default.
- W2899823062 hasAuthorship W2899823062A5008190964 @default.
- W2899823062 hasAuthorship W2899823062A5012559241 @default.
- W2899823062 hasAuthorship W2899823062A5029400872 @default.
- W2899823062 hasAuthorship W2899823062A5058424158 @default.
- W2899823062 hasAuthorship W2899823062A5069241620 @default.
- W2899823062 hasAuthorship W2899823062A5088374149 @default.
- W2899823062 hasConcept C108583219 @default.
- W2899823062 hasConcept C119857082 @default.
- W2899823062 hasConcept C121608353 @default.
- W2899823062 hasConcept C126322002 @default.
- W2899823062 hasConcept C153180895 @default.
- W2899823062 hasConcept C154945302 @default.
- W2899823062 hasConcept C162324750 @default.
- W2899823062 hasConcept C17744445 @default.
- W2899823062 hasConcept C187736073 @default.
- W2899823062 hasConcept C199539241 @default.
- W2899823062 hasConcept C2776359362 @default.
- W2899823062 hasConcept C2780451532 @default.
- W2899823062 hasConcept C2984842247 @default.
- W2899823062 hasConcept C41008148 @default.
- W2899823062 hasConcept C50644808 @default.
- W2899823062 hasConcept C71924100 @default.
- W2899823062 hasConcept C81363708 @default.
- W2899823062 hasConcept C94625758 @default.
- W2899823062 hasConceptScore W2899823062C108583219 @default.
- W2899823062 hasConceptScore W2899823062C119857082 @default.
- W2899823062 hasConceptScore W2899823062C121608353 @default.
- W2899823062 hasConceptScore W2899823062C126322002 @default.
- W2899823062 hasConceptScore W2899823062C153180895 @default.
- W2899823062 hasConceptScore W2899823062C154945302 @default.
- W2899823062 hasConceptScore W2899823062C162324750 @default.
- W2899823062 hasConceptScore W2899823062C17744445 @default.
- W2899823062 hasConceptScore W2899823062C187736073 @default.
- W2899823062 hasConceptScore W2899823062C199539241 @default.
- W2899823062 hasConceptScore W2899823062C2776359362 @default.
- W2899823062 hasConceptScore W2899823062C2780451532 @default.
- W2899823062 hasConceptScore W2899823062C2984842247 @default.
- W2899823062 hasConceptScore W2899823062C41008148 @default.
- W2899823062 hasConceptScore W2899823062C50644808 @default.