Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899834699> ?p ?o ?g. }
- W2899834699 endingPage "2234" @default.
- W2899834699 startingPage "2217" @default.
- W2899834699 abstract "The finite state projection (FSP) approach to solving the chemical master equation has enabled successful inference of discrete stochastic models to predict single-cell gene regulation dynamics. Unfortunately, the FSP approach is highly computationally intensive for all but the simplest models, an issue that is highly problematic when parameter inference and uncertainty quantification takes enormous numbers of parameter evaluations. To address this issue, we propose two new computational methods for the Bayesian inference of stochastic gene expression parameters given single-cell experiments. We formulate and verify an adaptive delayed acceptance Metropolis-Hastings (ADAMH) algorithm to utilize with reduced Krylov-basis projections of the FSP. We then introduce an extension of the ADAMH into a hybrid scheme that consists of an initial phase to construct a reduced model and a faster second phase to sample from the approximate posterior distribution determined by the constructed model. We test and compare both algorithms to an adaptive Metropolis algorithm with full FSP-based likelihood evaluations on three example models and simulated data to show that the new ADAMH variants achieve substantial speedup in comparison to the full FSP approach. By reducing the computational costs of parameter estimation, we expect the ADAMH approach to enable efficient data-driven estimation for more complex gene regulation models." @default.
- W2899834699 created "2018-11-16" @default.
- W2899834699 creator A5014948692 @default.
- W2899834699 creator A5035826093 @default.
- W2899834699 creator A5057253596 @default.
- W2899834699 creator A5087244907 @default.
- W2899834699 date "2019-02-19" @default.
- W2899834699 modified "2023-10-12" @default.
- W2899834699 title "Bayesian Estimation for Stochastic Gene Expression Using Multifidelity Models" @default.
- W2899834699 cites W1137540706 @default.
- W2899834699 cites W1528483814 @default.
- W2899834699 cites W1564223560 @default.
- W2899834699 cites W1596548636 @default.
- W2899834699 cites W1849560532 @default.
- W2899834699 cites W1935773568 @default.
- W2899834699 cites W1954993463 @default.
- W2899834699 cites W1963906834 @default.
- W2899834699 cites W1969674103 @default.
- W2899834699 cites W1974475129 @default.
- W2899834699 cites W1977957488 @default.
- W2899834699 cites W1978319180 @default.
- W2899834699 cites W1984217390 @default.
- W2899834699 cites W1984429906 @default.
- W2899834699 cites W1993482030 @default.
- W2899834699 cites W1995780830 @default.
- W2899834699 cites W1997377511 @default.
- W2899834699 cites W2020830643 @default.
- W2899834699 cites W2030911724 @default.
- W2899834699 cites W2039055345 @default.
- W2899834699 cites W2042770989 @default.
- W2899834699 cites W2049753327 @default.
- W2899834699 cites W2056760934 @default.
- W2899834699 cites W2057602562 @default.
- W2899834699 cites W2060662954 @default.
- W2899834699 cites W2062856462 @default.
- W2899834699 cites W2066594542 @default.
- W2899834699 cites W2067316154 @default.
- W2899834699 cites W2075251971 @default.
- W2899834699 cites W2083687991 @default.
- W2899834699 cites W2085061065 @default.
- W2899834699 cites W2086629747 @default.
- W2899834699 cites W2091198609 @default.
- W2899834699 cites W2114870653 @default.
- W2899834699 cites W2118587791 @default.
- W2899834699 cites W2120196508 @default.
- W2899834699 cites W2121901998 @default.
- W2899834699 cites W2127249846 @default.
- W2899834699 cites W2130727150 @default.
- W2899834699 cites W2134759932 @default.
- W2899834699 cites W2138163236 @default.
- W2899834699 cites W2138309709 @default.
- W2899834699 cites W2139668762 @default.
- W2899834699 cites W2142623799 @default.
- W2899834699 cites W2150519862 @default.
- W2899834699 cites W2152896489 @default.
- W2899834699 cites W2155418451 @default.
- W2899834699 cites W2164641792 @default.
- W2899834699 cites W2167244112 @default.
- W2899834699 cites W2168282770 @default.
- W2899834699 cites W2171280873 @default.
- W2899834699 cites W2178323921 @default.
- W2899834699 cites W2226462370 @default.
- W2899834699 cites W2500539065 @default.
- W2899834699 cites W2508210889 @default.
- W2899834699 cites W2513178912 @default.
- W2899834699 cites W2570666549 @default.
- W2899834699 cites W2738769799 @default.
- W2899834699 cites W2749106469 @default.
- W2899834699 cites W2811137963 @default.
- W2899834699 cites W2811395263 @default.
- W2899834699 cites W2887023447 @default.
- W2899834699 cites W2898784274 @default.
- W2899834699 cites W2910801096 @default.
- W2899834699 cites W2952685709 @default.
- W2899834699 cites W2963960970 @default.
- W2899834699 cites W3020882243 @default.
- W2899834699 cites W3098926670 @default.
- W2899834699 cites W3099541808 @default.
- W2899834699 cites W3101247528 @default.
- W2899834699 cites W3104744823 @default.
- W2899834699 cites W3121471846 @default.
- W2899834699 cites W3125096507 @default.
- W2899834699 cites W319066931 @default.
- W2899834699 cites W4256244191 @default.
- W2899834699 cites W565175910 @default.
- W2899834699 doi "https://doi.org/10.1021/acs.jpcb.8b10946" @default.
- W2899834699 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6697484" @default.
- W2899834699 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30777763" @default.
- W2899834699 hasPublicationYear "2019" @default.
- W2899834699 type Work @default.
- W2899834699 sameAs 2899834699 @default.
- W2899834699 citedByCount "10" @default.
- W2899834699 countsByYear W28998346992020 @default.
- W2899834699 countsByYear W28998346992021 @default.
- W2899834699 countsByYear W28998346992022 @default.
- W2899834699 countsByYear W28998346992023 @default.
- W2899834699 crossrefType "journal-article" @default.
- W2899834699 hasAuthorship W2899834699A5014948692 @default.