Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899863399> ?p ?o ?g. }
- W2899863399 endingPage "9788" @default.
- W2899863399 startingPage "9777" @default.
- W2899863399 abstract "In recent years, machine learning techniques have been applied to test the fault type in high-voltage circuit breakers (HVCBs). Most related research involves in improving the classification method for higher precision. Nevertheless, as an important part of the diagnosis, the feature information description of the vibration signal of an HVCB has been neglected; in particular, its diversity and significance are rarely considered in many real-world fault-diagnosis applications. Therefore, in this paper, a hybrid feature transformation is proposed to optimize the diagnosis performance for HVCB faults. First, we introduce a nonlinear feature mapping in the wavelet package time–frequency energy rate feature space based on random forest binary coding to extend the feature width. Then, a stacked autoencoder neural network is used for compressing the feature depth. Finally, five typical classifiers are applied in the hybrid feature space based on the experimental dataset. The superiority of the proposed feature optimal approach is verified by comparing the results in the three abovementioned feature spaces." @default.
- W2899863399 created "2018-11-16" @default.
- W2899863399 creator A5023329458 @default.
- W2899863399 creator A5032561481 @default.
- W2899863399 creator A5037893343 @default.
- W2899863399 creator A5044439714 @default.
- W2899863399 creator A5061025280 @default.
- W2899863399 creator A5069842437 @default.
- W2899863399 date "2019-12-01" @default.
- W2899863399 modified "2023-10-17" @default.
- W2899863399 title "High-Voltage Circuit Breaker Fault Diagnosis Using a Hybrid Feature Transformation Approach Based on Random Forest and Stacked Autoencoder" @default.
- W2899863399 cites W1512610179 @default.
- W2899863399 cites W1889820893 @default.
- W2899863399 cites W1967904638 @default.
- W2899863399 cites W1975142646 @default.
- W2899863399 cites W1982067074 @default.
- W2899863399 cites W2026443663 @default.
- W2899863399 cites W2034489756 @default.
- W2899863399 cites W2058983449 @default.
- W2899863399 cites W2060304859 @default.
- W2899863399 cites W2074358001 @default.
- W2899863399 cites W2074413628 @default.
- W2899863399 cites W2078735512 @default.
- W2899863399 cites W2087432286 @default.
- W2899863399 cites W2115144768 @default.
- W2899863399 cites W2132915908 @default.
- W2899863399 cites W2199533377 @default.
- W2899863399 cites W2508536993 @default.
- W2899863399 cites W2549639622 @default.
- W2899863399 cites W2549854719 @default.
- W2899863399 cites W2589498507 @default.
- W2899863399 cites W2607267965 @default.
- W2899863399 cites W2610288532 @default.
- W2899863399 cites W2613824325 @default.
- W2899863399 cites W2621023058 @default.
- W2899863399 cites W2728797517 @default.
- W2899863399 cites W2744604411 @default.
- W2899863399 cites W2746111230 @default.
- W2899863399 cites W2750949468 @default.
- W2899863399 cites W2762355244 @default.
- W2899863399 cites W2800105824 @default.
- W2899863399 cites W2911964244 @default.
- W2899863399 cites W813413397 @default.
- W2899863399 doi "https://doi.org/10.1109/tie.2018.2879308" @default.
- W2899863399 hasPublicationYear "2019" @default.
- W2899863399 type Work @default.
- W2899863399 sameAs 2899863399 @default.
- W2899863399 citedByCount "77" @default.
- W2899863399 countsByYear W28998633992019 @default.
- W2899863399 countsByYear W28998633992020 @default.
- W2899863399 countsByYear W28998633992021 @default.
- W2899863399 countsByYear W28998633992022 @default.
- W2899863399 countsByYear W28998633992023 @default.
- W2899863399 crossrefType "journal-article" @default.
- W2899863399 hasAuthorship W2899863399A5023329458 @default.
- W2899863399 hasAuthorship W2899863399A5032561481 @default.
- W2899863399 hasAuthorship W2899863399A5037893343 @default.
- W2899863399 hasAuthorship W2899863399A5044439714 @default.
- W2899863399 hasAuthorship W2899863399A5061025280 @default.
- W2899863399 hasAuthorship W2899863399A5069842437 @default.
- W2899863399 hasBestOaLocation W28998633991 @default.
- W2899863399 hasConcept C101738243 @default.
- W2899863399 hasConcept C104317684 @default.
- W2899863399 hasConcept C119599485 @default.
- W2899863399 hasConcept C127313418 @default.
- W2899863399 hasConcept C127413603 @default.
- W2899863399 hasConcept C138885662 @default.
- W2899863399 hasConcept C153180895 @default.
- W2899863399 hasConcept C154945302 @default.
- W2899863399 hasConcept C157069517 @default.
- W2899863399 hasConcept C165205528 @default.
- W2899863399 hasConcept C165801399 @default.
- W2899863399 hasConcept C169258074 @default.
- W2899863399 hasConcept C175551986 @default.
- W2899863399 hasConcept C185592680 @default.
- W2899863399 hasConcept C204241405 @default.
- W2899863399 hasConcept C24326235 @default.
- W2899863399 hasConcept C2776401178 @default.
- W2899863399 hasConcept C41008148 @default.
- W2899863399 hasConcept C41895202 @default.
- W2899863399 hasConcept C50644808 @default.
- W2899863399 hasConcept C55493867 @default.
- W2899863399 hasConcept C61352017 @default.
- W2899863399 hasConcept C68583231 @default.
- W2899863399 hasConceptScore W2899863399C101738243 @default.
- W2899863399 hasConceptScore W2899863399C104317684 @default.
- W2899863399 hasConceptScore W2899863399C119599485 @default.
- W2899863399 hasConceptScore W2899863399C127313418 @default.
- W2899863399 hasConceptScore W2899863399C127413603 @default.
- W2899863399 hasConceptScore W2899863399C138885662 @default.
- W2899863399 hasConceptScore W2899863399C153180895 @default.
- W2899863399 hasConceptScore W2899863399C154945302 @default.
- W2899863399 hasConceptScore W2899863399C157069517 @default.
- W2899863399 hasConceptScore W2899863399C165205528 @default.
- W2899863399 hasConceptScore W2899863399C165801399 @default.
- W2899863399 hasConceptScore W2899863399C169258074 @default.
- W2899863399 hasConceptScore W2899863399C175551986 @default.
- W2899863399 hasConceptScore W2899863399C185592680 @default.