Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899959984> ?p ?o ?g. }
- W2899959984 endingPage "1483" @default.
- W2899959984 startingPage "1462" @default.
- W2899959984 abstract "Abstract In spatial points that describe geographical events, outliers that deviate significantly from the global or local distribution indicate extraordinary geographical phenomena. Existing outlier detection methods cannot statistically identify significant outliers by considering the co‐occurrences of multiple categories of spatial points. Therefore, this study develops a non‐parametric statistical test method to detect significant cross‐outliers from two categories of spatial points divided into primary and reference ones. Firstly, the cross K function is employed to test the significance of co‐occurrences of the two categories of points, and the co‐occurrence intensity of each primary point is quantitatively defined as the number of reference points in its circular buffer. Then, the edge‐constrained Delaunay triangulation is utilized to construct a reasonable spatial neighborhood for each primary point. On this basis, the Monte Carlo method is utilized to simulate the distribution of reference points in the support domain of each primary point delineated using the α ‐shape algorithm, and those primary points with significantly different local co‐occurrence intensity are determined as spatial cross‐outliers. Finally, those cross‐outliers obtained using different buffers are evaluated further by analysis of living intervals. Experiments on both simulated and real‐life datasets demonstrate the effectiveness and practicability of the proposed method." @default.
- W2899959984 created "2018-11-16" @default.
- W2899959984 creator A5015266013 @default.
- W2899959984 creator A5027239954 @default.
- W2899959984 creator A5032507421 @default.
- W2899959984 creator A5049753601 @default.
- W2899959984 creator A5062666378 @default.
- W2899959984 creator A5087654837 @default.
- W2899959984 date "2018-11-04" @default.
- W2899959984 modified "2023-10-16" @default.
- W2899959984 title "A non‐parametric statistical test method to detect significant cross‐outliers in spatial points" @default.
- W2899959984 cites W124008658 @default.
- W2899959984 cites W1515636651 @default.
- W2899959984 cites W1586410151 @default.
- W2899959984 cites W1589875619 @default.
- W2899959984 cites W1607767822 @default.
- W2899959984 cites W1927233378 @default.
- W2899959984 cites W1966599063 @default.
- W2899959984 cites W1967270706 @default.
- W2899959984 cites W1982941443 @default.
- W2899959984 cites W1985698519 @default.
- W2899959984 cites W1994410766 @default.
- W2899959984 cites W1999110238 @default.
- W2899959984 cites W2007649687 @default.
- W2899959984 cites W2032101051 @default.
- W2899959984 cites W2034143770 @default.
- W2899959984 cites W2049058890 @default.
- W2899959984 cites W2050511892 @default.
- W2899959984 cites W2051529712 @default.
- W2899959984 cites W2060564327 @default.
- W2899959984 cites W2070888554 @default.
- W2899959984 cites W2071015596 @default.
- W2899959984 cites W2076990933 @default.
- W2899959984 cites W2086611938 @default.
- W2899959984 cites W2097006579 @default.
- W2899959984 cites W2102999520 @default.
- W2899959984 cites W2107990165 @default.
- W2899959984 cites W2150495678 @default.
- W2899959984 cites W2151631165 @default.
- W2899959984 cites W2153140731 @default.
- W2899959984 cites W2158184062 @default.
- W2899959984 cites W2170314592 @default.
- W2899959984 cites W2470739781 @default.
- W2899959984 cites W2484743940 @default.
- W2899959984 cites W2560190737 @default.
- W2899959984 cites W2745940368 @default.
- W2899959984 cites W4205557662 @default.
- W2899959984 cites W4253461361 @default.
- W2899959984 cites W4254182148 @default.
- W2899959984 doi "https://doi.org/10.1111/tgis.12481" @default.
- W2899959984 hasPublicationYear "2018" @default.
- W2899959984 type Work @default.
- W2899959984 sameAs 2899959984 @default.
- W2899959984 citedByCount "3" @default.
- W2899959984 countsByYear W28999599842020 @default.
- W2899959984 countsByYear W28999599842022 @default.
- W2899959984 crossrefType "journal-article" @default.
- W2899959984 hasAuthorship W2899959984A5015266013 @default.
- W2899959984 hasAuthorship W2899959984A5027239954 @default.
- W2899959984 hasAuthorship W2899959984A5032507421 @default.
- W2899959984 hasAuthorship W2899959984A5049753601 @default.
- W2899959984 hasAuthorship W2899959984A5062666378 @default.
- W2899959984 hasAuthorship W2899959984A5087654837 @default.
- W2899959984 hasConcept C105795698 @default.
- W2899959984 hasConcept C11413529 @default.
- W2899959984 hasConcept C117251300 @default.
- W2899959984 hasConcept C153180895 @default.
- W2899959984 hasConcept C154945302 @default.
- W2899959984 hasConcept C2524010 @default.
- W2899959984 hasConcept C28719098 @default.
- W2899959984 hasConcept C33923547 @default.
- W2899959984 hasConcept C41008148 @default.
- W2899959984 hasConcept C68010082 @default.
- W2899959984 hasConcept C79337645 @default.
- W2899959984 hasConcept C87007009 @default.
- W2899959984 hasConceptScore W2899959984C105795698 @default.
- W2899959984 hasConceptScore W2899959984C11413529 @default.
- W2899959984 hasConceptScore W2899959984C117251300 @default.
- W2899959984 hasConceptScore W2899959984C153180895 @default.
- W2899959984 hasConceptScore W2899959984C154945302 @default.
- W2899959984 hasConceptScore W2899959984C2524010 @default.
- W2899959984 hasConceptScore W2899959984C28719098 @default.
- W2899959984 hasConceptScore W2899959984C33923547 @default.
- W2899959984 hasConceptScore W2899959984C41008148 @default.
- W2899959984 hasConceptScore W2899959984C68010082 @default.
- W2899959984 hasConceptScore W2899959984C79337645 @default.
- W2899959984 hasConceptScore W2899959984C87007009 @default.
- W2899959984 hasFunder F4320321001 @default.
- W2899959984 hasFunder F4320321543 @default.
- W2899959984 hasIssue "6" @default.
- W2899959984 hasLocation W28999599841 @default.
- W2899959984 hasOpenAccess W2899959984 @default.
- W2899959984 hasPrimaryLocation W28999599841 @default.
- W2899959984 hasRelatedWork W2169910187 @default.
- W2899959984 hasRelatedWork W2323373563 @default.
- W2899959984 hasRelatedWork W2326128982 @default.
- W2899959984 hasRelatedWork W2373235700 @default.
- W2899959984 hasRelatedWork W2484743940 @default.