Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899962859> ?p ?o ?g. }
- W2899962859 endingPage "89" @default.
- W2899962859 startingPage "78" @default.
- W2899962859 abstract "Abstract Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective alternative for solving computationally challenging complex reliability analysis problems involving finite element response analysis. However, such approaches are primarily based on the principle of empirical risk minimization. The support vector machine for regression i.e. the support vector regression (SVR) which is based on structural risk minimization has revealed improved abilities of response approximation using small sample learning. The implementation of SVR model requires to optimize a loss function involving the loss function parameter, regularization parameter and also kernel function parameter(s) to tackle nonlinear problems. The success of SVR largely depends on proper choice of such parameters. A simple yet effective algorithm by solving an optimization sub-problem to minimize the mean square error value obtained by cross-validation method is investigated in the present study to construct SVR model for structural reliability analysis. The effectiveness of the algorithm is demonstrated numerically by comparing various computed statistical metrics obtained by the most accurate direct Monte Carlo Simulation (MCS) technique. The performance of SVR based metamodel to estimate the reliability is also studied by comparing the results with the direct MCS based results." @default.
- W2899962859 created "2018-11-16" @default.
- W2899962859 creator A5000443490 @default.
- W2899962859 creator A5013482894 @default.
- W2899962859 creator A5018236254 @default.
- W2899962859 date "2019-01-01" @default.
- W2899962859 modified "2023-10-16" @default.
- W2899962859 title "Support vector regression based metamodeling for structural reliability analysis" @default.
- W2899962859 cites W1797539709 @default.
- W2899962859 cites W1978459922 @default.
- W2899962859 cites W1981567151 @default.
- W2899962859 cites W1988006242 @default.
- W2899962859 cites W1996226468 @default.
- W2899962859 cites W2003657827 @default.
- W2899962859 cites W2007154098 @default.
- W2899962859 cites W2007411143 @default.
- W2899962859 cites W2007560771 @default.
- W2899962859 cites W2008034786 @default.
- W2899962859 cites W2009702729 @default.
- W2899962859 cites W2016210396 @default.
- W2899962859 cites W2016864600 @default.
- W2899962859 cites W2017818133 @default.
- W2899962859 cites W2018044188 @default.
- W2899962859 cites W2023261859 @default.
- W2899962859 cites W2046207241 @default.
- W2899962859 cites W2053784695 @default.
- W2899962859 cites W2053847073 @default.
- W2899962859 cites W2066722671 @default.
- W2899962859 cites W2066884548 @default.
- W2899962859 cites W2066924236 @default.
- W2899962859 cites W2075017033 @default.
- W2899962859 cites W2085404581 @default.
- W2899962859 cites W2096462449 @default.
- W2899962859 cites W2128618097 @default.
- W2899962859 cites W2137295153 @default.
- W2899962859 cites W2143852612 @default.
- W2899962859 cites W2165735039 @default.
- W2899962859 cites W2277932843 @default.
- W2899962859 cites W2536642814 @default.
- W2899962859 cites W2565599319 @default.
- W2899962859 cites W2589383136 @default.
- W2899962859 cites W2592887437 @default.
- W2899962859 cites W2605310885 @default.
- W2899962859 cites W2612783399 @default.
- W2899962859 cites W2729558485 @default.
- W2899962859 cites W2770409481 @default.
- W2899962859 cites W2792035381 @default.
- W2899962859 cites W2885733747 @default.
- W2899962859 doi "https://doi.org/10.1016/j.probengmech.2018.11.001" @default.
- W2899962859 hasPublicationYear "2019" @default.
- W2899962859 type Work @default.
- W2899962859 sameAs 2899962859 @default.
- W2899962859 citedByCount "72" @default.
- W2899962859 countsByYear W28999628592019 @default.
- W2899962859 countsByYear W28999628592020 @default.
- W2899962859 countsByYear W28999628592021 @default.
- W2899962859 countsByYear W28999628592022 @default.
- W2899962859 countsByYear W28999628592023 @default.
- W2899962859 crossrefType "journal-article" @default.
- W2899962859 hasAuthorship W2899962859A5000443490 @default.
- W2899962859 hasAuthorship W2899962859A5013482894 @default.
- W2899962859 hasAuthorship W2899962859A5018236254 @default.
- W2899962859 hasConcept C105795698 @default.
- W2899962859 hasConcept C119857082 @default.
- W2899962859 hasConcept C121332964 @default.
- W2899962859 hasConcept C12267149 @default.
- W2899962859 hasConcept C124101348 @default.
- W2899962859 hasConcept C127413603 @default.
- W2899962859 hasConcept C152877465 @default.
- W2899962859 hasConcept C154945302 @default.
- W2899962859 hasConcept C163258240 @default.
- W2899962859 hasConcept C199360897 @default.
- W2899962859 hasConcept C200601418 @default.
- W2899962859 hasConcept C2987092418 @default.
- W2899962859 hasConcept C33923547 @default.
- W2899962859 hasConcept C41008148 @default.
- W2899962859 hasConcept C43214815 @default.
- W2899962859 hasConcept C49937458 @default.
- W2899962859 hasConcept C62520636 @default.
- W2899962859 hasConcept C83546350 @default.
- W2899962859 hasConcept C86610423 @default.
- W2899962859 hasConceptScore W2899962859C105795698 @default.
- W2899962859 hasConceptScore W2899962859C119857082 @default.
- W2899962859 hasConceptScore W2899962859C121332964 @default.
- W2899962859 hasConceptScore W2899962859C12267149 @default.
- W2899962859 hasConceptScore W2899962859C124101348 @default.
- W2899962859 hasConceptScore W2899962859C127413603 @default.
- W2899962859 hasConceptScore W2899962859C152877465 @default.
- W2899962859 hasConceptScore W2899962859C154945302 @default.
- W2899962859 hasConceptScore W2899962859C163258240 @default.
- W2899962859 hasConceptScore W2899962859C199360897 @default.
- W2899962859 hasConceptScore W2899962859C200601418 @default.
- W2899962859 hasConceptScore W2899962859C2987092418 @default.
- W2899962859 hasConceptScore W2899962859C33923547 @default.
- W2899962859 hasConceptScore W2899962859C41008148 @default.
- W2899962859 hasConceptScore W2899962859C43214815 @default.
- W2899962859 hasConceptScore W2899962859C49937458 @default.
- W2899962859 hasConceptScore W2899962859C62520636 @default.