Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899971560> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2899971560 endingPage "73" @default.
- W2899971560 startingPage "66" @default.
- W2899971560 abstract "Speech Emotion Recognition is one of the most challenging researches in the field of Human-Computer Interaction (HCI). The accuracy of detecting emotion depends on several factors for example, type of emotion and number of emotion which is classified, quality of speech. In this research, we introduced the process of detecting 4 different emotion types (anger, happy, natural, and sad) from Thai speech which was recorded from Thai drama show which was most similar with daily life speech. The proposed algorithms used the combination of Support Vector Machine, Neural Network and k-Nearest Neighbors for emotion classification by using the ensemble classification method with majority weight voting. The experimental results show that emotion classification by using the ensemble classification method by using the majority weight voting can efficiency give the better accuracy results than the single model. The proposed method has better results when using with fundamental frequency (F0) and Mel-frequency cepstral coefficients (MFCC) of speech which give the accuracy results at 70.69%." @default.
- W2899971560 created "2018-11-16" @default.
- W2899971560 creator A5018273513 @default.
- W2899971560 creator A5025369502 @default.
- W2899971560 date "2018-01-01" @default.
- W2899971560 modified "2023-10-06" @default.
- W2899971560 title "Detecting Human Emotion via Speech Recognition by Using Ensemble Classification Model" @default.
- W2899971560 cites W175750906 @default.
- W2899971560 cites W1777611629 @default.
- W2899971560 cites W2019388356 @default.
- W2899971560 cites W2031376335 @default.
- W2899971560 cites W2060789910 @default.
- W2899971560 cites W2074788634 @default.
- W2899971560 cites W2123119128 @default.
- W2899971560 cites W2142250632 @default.
- W2899971560 cites W2142995730 @default.
- W2899971560 cites W2147634797 @default.
- W2899971560 cites W2183359586 @default.
- W2899971560 cites W4233723219 @default.
- W2899971560 cites W4234892472 @default.
- W2899971560 doi "https://doi.org/10.1007/978-3-319-98752-1_8" @default.
- W2899971560 hasPublicationYear "2018" @default.
- W2899971560 type Work @default.
- W2899971560 sameAs 2899971560 @default.
- W2899971560 citedByCount "1" @default.
- W2899971560 countsByYear W28999715602021 @default.
- W2899971560 crossrefType "book-chapter" @default.
- W2899971560 hasAuthorship W2899971560A5018273513 @default.
- W2899971560 hasAuthorship W2899971560A5025369502 @default.
- W2899971560 hasConcept C153180895 @default.
- W2899971560 hasConcept C154945302 @default.
- W2899971560 hasConcept C2777438025 @default.
- W2899971560 hasConcept C28490314 @default.
- W2899971560 hasConcept C41008148 @default.
- W2899971560 hasConceptScore W2899971560C153180895 @default.
- W2899971560 hasConceptScore W2899971560C154945302 @default.
- W2899971560 hasConceptScore W2899971560C2777438025 @default.
- W2899971560 hasConceptScore W2899971560C28490314 @default.
- W2899971560 hasConceptScore W2899971560C41008148 @default.
- W2899971560 hasLocation W28999715601 @default.
- W2899971560 hasOpenAccess W2899971560 @default.
- W2899971560 hasPrimaryLocation W28999715601 @default.
- W2899971560 hasRelatedWork W1978450727 @default.
- W2899971560 hasRelatedWork W2033914206 @default.
- W2899971560 hasRelatedWork W2046077695 @default.
- W2899971560 hasRelatedWork W2146076056 @default.
- W2899971560 hasRelatedWork W2163371487 @default.
- W2899971560 hasRelatedWork W2163831990 @default.
- W2899971560 hasRelatedWork W2368779261 @default.
- W2899971560 hasRelatedWork W2378160586 @default.
- W2899971560 hasRelatedWork W2794438528 @default.
- W2899971560 hasRelatedWork W3003836766 @default.
- W2899971560 isParatext "false" @default.
- W2899971560 isRetracted "false" @default.
- W2899971560 magId "2899971560" @default.
- W2899971560 workType "book-chapter" @default.