Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899977071> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2899977071 abstract "Abstract The daily drilling report (DDR) contains the daily activities and parameters during drilling and completion (D&C) operations that can be used to identify the bottlenecks and improve efficiency. However, the datasets are large, unstructured, text heavy, not correlated to other datasets, and contain numerous gaps and errors. Thus, conducting any meaningful drilling analytics becomes cumbersome. In this paper, an innovative method is introduced to automatically clean the data and extract intelligent analytics and opportunities from these reports. Natural language processing (NLP) and deep neural network (DNN) models are developed to extract information from unstructured DDRs. Numbers of interest (such as depths, hole sizes, casing sizes, setting depths, etc.) are extracted from text. Drilling phase, non-productive time (NPT) and the associated types are predicted with DNN models. With 30% of the dataset for training, accuracies achieved on the remaining data include 87.5% for drilling phase, 90.7% for time classifications (productive or non-productive), and 89% for associated NPT types. Then, the D&C datasets are integrated with other data sources such as production, geology, reservoir, etc. to generate a set of crucial drilling and reservoir management metrics. The proposed method was successfully applied to several major oil fields (with total of more than 2,000 wells) in the Middle East, North America, and South America. Here, a case study is presented in which the developed method was applied to more than 200 wells drilled from 2012 to 2016 in a major oil field. By using the proposed method, the data processing and aggregation time that used to take months to accomplish was reduced to only a few days. As a result, major types of NPT were rapidly identified, which include rig-related issues such as repair and maintenance (30%), followed by stuck pipe (23%), hole/mud related issues (such as wellbore stability, mud loss, shale swelling, etc.) (20%), and downhole equipment failures and maintenance (14%). Drilling solutions such as contractual advices, improving the mud formulations, and drilling with a rotary steerable system (RSS) were proposed to possibly mitigate the NPT and improve drilling efficiency. Implementation of the proposed solutions eventually resulted in reducing the drilling time and improving capital efficiency. Novel technologies such as NLP, data mining, and machine learning are applied to rapidly QC, mine, integrate and analyze large volumes of D&C data. In addition, this novel approach assists D&C obstacles identification and future plan optimization with evident benefits for improving performance and capital efficiency from a reservoir management perspective." @default.
- W2899977071 created "2018-11-16" @default.
- W2899977071 creator A5009237873 @default.
- W2899977071 creator A5010082605 @default.
- W2899977071 creator A5023999862 @default.
- W2899977071 creator A5027344733 @default.
- W2899977071 creator A5060962573 @default.
- W2899977071 creator A5070010238 @default.
- W2899977071 date "2018-11-12" @default.
- W2899977071 modified "2023-09-26" @default.
- W2899977071 title "Applications of Machine Learning and Data Mining in SpeedWise® Drilling Analytics: A Case Study" @default.
- W2899977071 cites W2111030512 @default.
- W2899977071 cites W2336805000 @default.
- W2899977071 cites W2962891531 @default.
- W2899977071 cites W4213009331 @default.
- W2899977071 doi "https://doi.org/10.2118/193224-ms" @default.
- W2899977071 hasPublicationYear "2018" @default.
- W2899977071 type Work @default.
- W2899977071 sameAs 2899977071 @default.
- W2899977071 citedByCount "8" @default.
- W2899977071 countsByYear W28999770712019 @default.
- W2899977071 countsByYear W28999770712020 @default.
- W2899977071 countsByYear W28999770712023 @default.
- W2899977071 crossrefType "proceedings-article" @default.
- W2899977071 hasAuthorship W2899977071A5009237873 @default.
- W2899977071 hasAuthorship W2899977071A5010082605 @default.
- W2899977071 hasAuthorship W2899977071A5023999862 @default.
- W2899977071 hasAuthorship W2899977071A5027344733 @default.
- W2899977071 hasAuthorship W2899977071A5060962573 @default.
- W2899977071 hasAuthorship W2899977071A5070010238 @default.
- W2899977071 hasConcept C119857082 @default.
- W2899977071 hasConcept C124101348 @default.
- W2899977071 hasConcept C127313418 @default.
- W2899977071 hasConcept C127413603 @default.
- W2899977071 hasConcept C154945302 @default.
- W2899977071 hasConcept C177264268 @default.
- W2899977071 hasConcept C199360897 @default.
- W2899977071 hasConcept C202444582 @default.
- W2899977071 hasConcept C25197100 @default.
- W2899977071 hasConcept C2776364302 @default.
- W2899977071 hasConcept C2779538338 @default.
- W2899977071 hasConcept C30399818 @default.
- W2899977071 hasConcept C33923547 @default.
- W2899977071 hasConcept C41008148 @default.
- W2899977071 hasConcept C50644808 @default.
- W2899977071 hasConcept C75684735 @default.
- W2899977071 hasConcept C78519656 @default.
- W2899977071 hasConcept C78762247 @default.
- W2899977071 hasConcept C79158427 @default.
- W2899977071 hasConcept C9652623 @default.
- W2899977071 hasConceptScore W2899977071C119857082 @default.
- W2899977071 hasConceptScore W2899977071C124101348 @default.
- W2899977071 hasConceptScore W2899977071C127313418 @default.
- W2899977071 hasConceptScore W2899977071C127413603 @default.
- W2899977071 hasConceptScore W2899977071C154945302 @default.
- W2899977071 hasConceptScore W2899977071C177264268 @default.
- W2899977071 hasConceptScore W2899977071C199360897 @default.
- W2899977071 hasConceptScore W2899977071C202444582 @default.
- W2899977071 hasConceptScore W2899977071C25197100 @default.
- W2899977071 hasConceptScore W2899977071C2776364302 @default.
- W2899977071 hasConceptScore W2899977071C2779538338 @default.
- W2899977071 hasConceptScore W2899977071C30399818 @default.
- W2899977071 hasConceptScore W2899977071C33923547 @default.
- W2899977071 hasConceptScore W2899977071C41008148 @default.
- W2899977071 hasConceptScore W2899977071C50644808 @default.
- W2899977071 hasConceptScore W2899977071C75684735 @default.
- W2899977071 hasConceptScore W2899977071C78519656 @default.
- W2899977071 hasConceptScore W2899977071C78762247 @default.
- W2899977071 hasConceptScore W2899977071C79158427 @default.
- W2899977071 hasConceptScore W2899977071C9652623 @default.
- W2899977071 hasLocation W28999770711 @default.
- W2899977071 hasOpenAccess W2899977071 @default.
- W2899977071 hasPrimaryLocation W28999770711 @default.
- W2899977071 hasRelatedWork W1969174666 @default.
- W2899977071 hasRelatedWork W2046579707 @default.
- W2899977071 hasRelatedWork W2066216045 @default.
- W2899977071 hasRelatedWork W2070080711 @default.
- W2899977071 hasRelatedWork W2256260177 @default.
- W2899977071 hasRelatedWork W2366207065 @default.
- W2899977071 hasRelatedWork W2380680936 @default.
- W2899977071 hasRelatedWork W2383607081 @default.
- W2899977071 hasRelatedWork W2897205583 @default.
- W2899977071 hasRelatedWork W3092604276 @default.
- W2899977071 isParatext "false" @default.
- W2899977071 isRetracted "false" @default.
- W2899977071 magId "2899977071" @default.
- W2899977071 workType "article" @default.