Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899996856> ?p ?o ?g. }
- W2899996856 endingPage "357" @default.
- W2899996856 startingPage "338" @default.
- W2899996856 abstract "As the wind energy developing, wind speed prediction is important for the reliability of wind power system and the integration of wind energy into the power network. This paper proposed a novel model based on hybrid mode decomposition (HMD) method and online sequential outlier robust extreme learning machine (OSORELM) for short-term wind speed prediction. In data pre-processing period, wind speed is deeply decomposed by HMD, which is comprised of variational mode decomposition (VMD), sample entropy (SE) and wavelet packet decomposition (WPD). The crisscross algorithm (CSO) is applied to optimize the input-weights and hidden layer biases for OSORELM, which have impact on the forecasting performance. The experiment results show that: (a) HMD is an effective way of wind speed decomposition, which can capture the characteristics of wind speed time series accurately and thus promote the prediction performance; (b) the OSORELM performs better than offline models in practical forecasting; (c) the proposed forecasting model has greatly improved the accuracy in multi-step wind speed forecasting." @default.
- W2899996856 created "2018-11-16" @default.
- W2899996856 creator A5032744008 @default.
- W2899996856 creator A5057755414 @default.
- W2899996856 creator A5068777328 @default.
- W2899996856 creator A5086559201 @default.
- W2899996856 date "2019-01-01" @default.
- W2899996856 modified "2023-10-01" @default.
- W2899996856 title "A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine" @default.
- W2899996856 cites W1862394037 @default.
- W2899996856 cites W1923027492 @default.
- W2899996856 cites W1977398352 @default.
- W2899996856 cites W1984061847 @default.
- W2899996856 cites W1986096622 @default.
- W2899996856 cites W2000982976 @default.
- W2899996856 cites W2011032294 @default.
- W2899996856 cites W2014743688 @default.
- W2899996856 cites W2027486666 @default.
- W2899996856 cites W2036681246 @default.
- W2899996856 cites W2058504886 @default.
- W2899996856 cites W2074715647 @default.
- W2899996856 cites W2111072639 @default.
- W2899996856 cites W2150973794 @default.
- W2899996856 cites W2158054309 @default.
- W2899996856 cites W2275988060 @default.
- W2899996856 cites W2280029926 @default.
- W2899996856 cites W2283544056 @default.
- W2899996856 cites W2284726324 @default.
- W2899996856 cites W2321536237 @default.
- W2899996856 cites W2404144478 @default.
- W2899996856 cites W2533807209 @default.
- W2899996856 cites W2570991997 @default.
- W2899996856 cites W2581205918 @default.
- W2899996856 cites W2590277499 @default.
- W2899996856 cites W2737765213 @default.
- W2899996856 cites W2742197121 @default.
- W2899996856 cites W2773931999 @default.
- W2899996856 cites W2774375709 @default.
- W2899996856 cites W2783204403 @default.
- W2899996856 cites W2792913188 @default.
- W2899996856 cites W2793929569 @default.
- W2899996856 cites W2801540881 @default.
- W2899996856 cites W341735883 @default.
- W2899996856 cites W2052481241 @default.
- W2899996856 doi "https://doi.org/10.1016/j.enconman.2018.10.089" @default.
- W2899996856 hasPublicationYear "2019" @default.
- W2899996856 type Work @default.
- W2899996856 sameAs 2899996856 @default.
- W2899996856 citedByCount "106" @default.
- W2899996856 countsByYear W28999968562019 @default.
- W2899996856 countsByYear W28999968562020 @default.
- W2899996856 countsByYear W28999968562021 @default.
- W2899996856 countsByYear W28999968562022 @default.
- W2899996856 countsByYear W28999968562023 @default.
- W2899996856 crossrefType "journal-article" @default.
- W2899996856 hasAuthorship W2899996856A5032744008 @default.
- W2899996856 hasAuthorship W2899996856A5057755414 @default.
- W2899996856 hasAuthorship W2899996856A5068777328 @default.
- W2899996856 hasAuthorship W2899996856A5086559201 @default.
- W2899996856 hasBestOaLocation W28999968561 @default.
- W2899996856 hasConcept C119599485 @default.
- W2899996856 hasConcept C121332964 @default.
- W2899996856 hasConcept C127413603 @default.
- W2899996856 hasConcept C153294291 @default.
- W2899996856 hasConcept C154945302 @default.
- W2899996856 hasConcept C161067210 @default.
- W2899996856 hasConcept C163258240 @default.
- W2899996856 hasConcept C2780150128 @default.
- W2899996856 hasConcept C2781084341 @default.
- W2899996856 hasConcept C41008148 @default.
- W2899996856 hasConcept C44154836 @default.
- W2899996856 hasConcept C50644808 @default.
- W2899996856 hasConcept C62520636 @default.
- W2899996856 hasConcept C739882 @default.
- W2899996856 hasConcept C78600449 @default.
- W2899996856 hasConcept C79337645 @default.
- W2899996856 hasConcept C89227174 @default.
- W2899996856 hasConceptScore W2899996856C119599485 @default.
- W2899996856 hasConceptScore W2899996856C121332964 @default.
- W2899996856 hasConceptScore W2899996856C127413603 @default.
- W2899996856 hasConceptScore W2899996856C153294291 @default.
- W2899996856 hasConceptScore W2899996856C154945302 @default.
- W2899996856 hasConceptScore W2899996856C161067210 @default.
- W2899996856 hasConceptScore W2899996856C163258240 @default.
- W2899996856 hasConceptScore W2899996856C2780150128 @default.
- W2899996856 hasConceptScore W2899996856C2781084341 @default.
- W2899996856 hasConceptScore W2899996856C41008148 @default.
- W2899996856 hasConceptScore W2899996856C44154836 @default.
- W2899996856 hasConceptScore W2899996856C50644808 @default.
- W2899996856 hasConceptScore W2899996856C62520636 @default.
- W2899996856 hasConceptScore W2899996856C739882 @default.
- W2899996856 hasConceptScore W2899996856C78600449 @default.
- W2899996856 hasConceptScore W2899996856C79337645 @default.
- W2899996856 hasConceptScore W2899996856C89227174 @default.
- W2899996856 hasFunder F4320326279 @default.
- W2899996856 hasLocation W28999968561 @default.
- W2899996856 hasOpenAccess W2899996856 @default.
- W2899996856 hasPrimaryLocation W28999968561 @default.