Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900102855> ?p ?o ?g. }
- W2900102855 abstract "In the {em distributed all-pairs shortest paths} problem (APSP), every node in the weighted undirected distributed network (the CONGEST model) needs to know the distance from every other node using least number of communication rounds (typically called {em time complexity}). The problem admits $(1+o(1))$-approximation $tildeTheta(n)$-time algorithm and a nearly-tight $tilde Omega(n)$ lower bound [Nanongkai, STOC'14; Lenzen and Patt-Shamir PODC'15]footnote{$tilde Theta$, $tilde O$ and $tilde Omega$ hide polylogarithmic factors. Note that the lower bounds also hold even in the unweighted case and in the weighted case with polynomial approximation ratios~cite{LenzenP_podc13,HolzerW12,PelegRT12,Nanongkai-STOC14}.}. For the exact case, Elkin [STOC'17] presented an $O(n^{5/3} log^{2/3} n)$ time bound, which was later improved to $tilde O(n^{5/4})$ [Huang, Nanongkai, Saranurak FOCS'17]. It was shown that any super-linear lower bound (in $n$) requires a new technique [Censor-Hillel, Khoury, Paz, DISC'17], but otherwise it remained widely open whether there exists a $tilde O(n)$-time algorithm for the exact case, which would match the best possible approximation algorithm. This paper resolves this question positively: we present a randomized (Las Vegas) $tilde O(n)$-time algorithm, matching the lower bound up to polylogarithmic factors. Like the previous $tilde O(n^{5/4})$ bound, our result works for directed graphs with zero (and even negative) edge weights. In addition to the improved running time, our algorithm works in a more general setting than that required by the previous $tilde O(n^{5/4})$ bound; in our setting (i) the communication is only along edge directions (as opposed to bidirectional), and (ii) edge weights are arbitrary (as opposed to integers in {1, 2, ... poly(n)}). ..." @default.
- W2900102855 created "2018-11-16" @default.
- W2900102855 creator A5033889707 @default.
- W2900102855 creator A5074369690 @default.
- W2900102855 date "2018-11-08" @default.
- W2900102855 modified "2023-10-07" @default.
- W2900102855 title "Distributed Exact Weighted All-Pairs Shortest Paths in Near-Linear Time" @default.
- W2900102855 cites W147275194 @default.
- W2900102855 cites W1497938971 @default.
- W2900102855 cites W1500483810 @default.
- W2900102855 cites W1508113861 @default.
- W2900102855 cites W1582638066 @default.
- W2900102855 cites W1605733898 @default.
- W2900102855 cites W1974912205 @default.
- W2900102855 cites W1984090926 @default.
- W2900102855 cites W1993913882 @default.
- W2900102855 cites W2015819397 @default.
- W2900102855 cites W2022980325 @default.
- W2900102855 cites W2026798971 @default.
- W2900102855 cites W2040011014 @default.
- W2900102855 cites W2040273581 @default.
- W2900102855 cites W2048098617 @default.
- W2900102855 cites W2058191123 @default.
- W2900102855 cites W2083323175 @default.
- W2900102855 cites W2101014999 @default.
- W2900102855 cites W2107282727 @default.
- W2900102855 cites W2116055396 @default.
- W2900102855 cites W2163097371 @default.
- W2900102855 cites W2227557434 @default.
- W2900102855 cites W2592613193 @default.
- W2900102855 cites W2895866428 @default.
- W2900102855 cites W2896802580 @default.
- W2900102855 cites W2897112965 @default.
- W2900102855 cites W2911409877 @default.
- W2900102855 cites W2949524113 @default.
- W2900102855 cites W2949855858 @default.
- W2900102855 cites W2963245981 @default.
- W2900102855 cites W2963420932 @default.
- W2900102855 cites W2963948050 @default.
- W2900102855 cites W2963978988 @default.
- W2900102855 cites W2964031269 @default.
- W2900102855 cites W3101974321 @default.
- W2900102855 cites W3102961801 @default.
- W2900102855 hasPublicationYear "2018" @default.
- W2900102855 type Work @default.
- W2900102855 sameAs 2900102855 @default.
- W2900102855 citedByCount "2" @default.
- W2900102855 countsByYear W29001028552018 @default.
- W2900102855 countsByYear W29001028552019 @default.
- W2900102855 crossrefType "posted-content" @default.
- W2900102855 hasAuthorship W2900102855A5033889707 @default.
- W2900102855 hasAuthorship W2900102855A5074369690 @default.
- W2900102855 hasConcept C105795698 @default.
- W2900102855 hasConcept C11413529 @default.
- W2900102855 hasConcept C114614502 @default.
- W2900102855 hasConcept C118615104 @default.
- W2900102855 hasConcept C121332964 @default.
- W2900102855 hasConcept C134306372 @default.
- W2900102855 hasConcept C165064840 @default.
- W2900102855 hasConcept C2779557605 @default.
- W2900102855 hasConcept C3017489831 @default.
- W2900102855 hasConcept C311688 @default.
- W2900102855 hasConcept C33923547 @default.
- W2900102855 hasConcept C36686422 @default.
- W2900102855 hasConcept C62520636 @default.
- W2900102855 hasConcept C77553402 @default.
- W2900102855 hasConcept C90119067 @default.
- W2900102855 hasConceptScore W2900102855C105795698 @default.
- W2900102855 hasConceptScore W2900102855C11413529 @default.
- W2900102855 hasConceptScore W2900102855C114614502 @default.
- W2900102855 hasConceptScore W2900102855C118615104 @default.
- W2900102855 hasConceptScore W2900102855C121332964 @default.
- W2900102855 hasConceptScore W2900102855C134306372 @default.
- W2900102855 hasConceptScore W2900102855C165064840 @default.
- W2900102855 hasConceptScore W2900102855C2779557605 @default.
- W2900102855 hasConceptScore W2900102855C3017489831 @default.
- W2900102855 hasConceptScore W2900102855C311688 @default.
- W2900102855 hasConceptScore W2900102855C33923547 @default.
- W2900102855 hasConceptScore W2900102855C36686422 @default.
- W2900102855 hasConceptScore W2900102855C62520636 @default.
- W2900102855 hasConceptScore W2900102855C77553402 @default.
- W2900102855 hasConceptScore W2900102855C90119067 @default.
- W2900102855 hasLocation W29001028551 @default.
- W2900102855 hasOpenAccess W2900102855 @default.
- W2900102855 hasPrimaryLocation W29001028551 @default.
- W2900102855 hasRelatedWork W1497938971 @default.
- W2900102855 hasRelatedWork W1515635142 @default.
- W2900102855 hasRelatedWork W2620124033 @default.
- W2900102855 hasRelatedWork W2746769191 @default.
- W2900102855 hasRelatedWork W2935819705 @default.
- W2900102855 hasRelatedWork W2938795088 @default.
- W2900102855 hasRelatedWork W2942467327 @default.
- W2900102855 hasRelatedWork W2945031003 @default.
- W2900102855 hasRelatedWork W2949607604 @default.
- W2900102855 hasRelatedWork W2952103668 @default.
- W2900102855 hasRelatedWork W2952708184 @default.
- W2900102855 hasRelatedWork W2962960360 @default.
- W2900102855 hasRelatedWork W2996098186 @default.
- W2900102855 hasRelatedWork W3015309785 @default.
- W2900102855 hasRelatedWork W3016709189 @default.