Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900107131> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2900107131 endingPage "27" @default.
- W2900107131 startingPage "21" @default.
- W2900107131 abstract "This paper suggests a new approach for radicalization detection using natural language processing techniques. Although, intuitively speaking, detection of radicalization from only language cues is not trivial and very debatable, the advances in computational linguistics together with the availability of large corpus that allows application of machine learning techniques opens us new horizons in the field. This paper advocates a two stage detection approach where in the first phase a radicalization score is obtained by analyzing mainly inherent characteristics of negative sentiment. In the second phase, a machine learning approach based on hybrid KNN-SVM and a variety of features, which include 1, 2 and 3-g, personality traits, emotions, as well as other linguistic and network related features were employed. The approach is validated using both Twitter and Tumblr dataset." @default.
- W2900107131 created "2018-11-16" @default.
- W2900107131 creator A5003011939 @default.
- W2900107131 creator A5051336752 @default.
- W2900107131 creator A5068812101 @default.
- W2900107131 date "2018-01-01" @default.
- W2900107131 modified "2023-09-26" @default.
- W2900107131 title "On Detecting Online Radicalization Using Natural Language Processing" @default.
- W2900107131 cites W1976733194 @default.
- W2900107131 cites W2060127589 @default.
- W2900107131 cites W2077873789 @default.
- W2900107131 cites W2084907416 @default.
- W2900107131 cites W2130786629 @default.
- W2900107131 cites W2132871411 @default.
- W2900107131 cites W2150824763 @default.
- W2900107131 cites W2158295279 @default.
- W2900107131 cites W2253491900 @default.
- W2900107131 cites W2289946673 @default.
- W2900107131 cites W2345057465 @default.
- W2900107131 cites W2575876932 @default.
- W2900107131 cites W2595653137 @default.
- W2900107131 cites W2779933076 @default.
- W2900107131 cites W2898098561 @default.
- W2900107131 cites W4239188521 @default.
- W2900107131 cites W4240665997 @default.
- W2900107131 doi "https://doi.org/10.1007/978-3-030-03496-2_4" @default.
- W2900107131 hasPublicationYear "2018" @default.
- W2900107131 type Work @default.
- W2900107131 sameAs 2900107131 @default.
- W2900107131 citedByCount "5" @default.
- W2900107131 countsByYear W29001071312020 @default.
- W2900107131 countsByYear W29001071312021 @default.
- W2900107131 countsByYear W29001071312023 @default.
- W2900107131 crossrefType "book-chapter" @default.
- W2900107131 hasAuthorship W2900107131A5003011939 @default.
- W2900107131 hasAuthorship W2900107131A5051336752 @default.
- W2900107131 hasAuthorship W2900107131A5068812101 @default.
- W2900107131 hasBestOaLocation W29001071312 @default.
- W2900107131 hasConcept C119857082 @default.
- W2900107131 hasConcept C12267149 @default.
- W2900107131 hasConcept C136197465 @default.
- W2900107131 hasConcept C154945302 @default.
- W2900107131 hasConcept C166957645 @default.
- W2900107131 hasConcept C202444582 @default.
- W2900107131 hasConcept C203133693 @default.
- W2900107131 hasConcept C204321447 @default.
- W2900107131 hasConcept C2777113924 @default.
- W2900107131 hasConcept C33923547 @default.
- W2900107131 hasConcept C41008148 @default.
- W2900107131 hasConcept C66402592 @default.
- W2900107131 hasConcept C95457728 @default.
- W2900107131 hasConcept C9652623 @default.
- W2900107131 hasConceptScore W2900107131C119857082 @default.
- W2900107131 hasConceptScore W2900107131C12267149 @default.
- W2900107131 hasConceptScore W2900107131C136197465 @default.
- W2900107131 hasConceptScore W2900107131C154945302 @default.
- W2900107131 hasConceptScore W2900107131C166957645 @default.
- W2900107131 hasConceptScore W2900107131C202444582 @default.
- W2900107131 hasConceptScore W2900107131C203133693 @default.
- W2900107131 hasConceptScore W2900107131C204321447 @default.
- W2900107131 hasConceptScore W2900107131C2777113924 @default.
- W2900107131 hasConceptScore W2900107131C33923547 @default.
- W2900107131 hasConceptScore W2900107131C41008148 @default.
- W2900107131 hasConceptScore W2900107131C66402592 @default.
- W2900107131 hasConceptScore W2900107131C95457728 @default.
- W2900107131 hasConceptScore W2900107131C9652623 @default.
- W2900107131 hasLocation W29001071311 @default.
- W2900107131 hasLocation W29001071312 @default.
- W2900107131 hasOpenAccess W2900107131 @default.
- W2900107131 hasPrimaryLocation W29001071311 @default.
- W2900107131 hasRelatedWork W1996541855 @default.
- W2900107131 hasRelatedWork W2355927362 @default.
- W2900107131 hasRelatedWork W2767332506 @default.
- W2900107131 hasRelatedWork W3123624369 @default.
- W2900107131 hasRelatedWork W3139257358 @default.
- W2900107131 hasRelatedWork W3192794374 @default.
- W2900107131 hasRelatedWork W3195168932 @default.
- W2900107131 hasRelatedWork W4293324375 @default.
- W2900107131 hasRelatedWork W4317653575 @default.
- W2900107131 hasRelatedWork W4362613237 @default.
- W2900107131 isParatext "false" @default.
- W2900107131 isRetracted "false" @default.
- W2900107131 magId "2900107131" @default.
- W2900107131 workType "book-chapter" @default.