Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900115778> ?p ?o ?g. }
- W2900115778 endingPage "2997" @default.
- W2900115778 startingPage "2991" @default.
- W2900115778 abstract "ConspectusChemically active colloids can achieve force- and torque-free motility (“self-propulsion”) via the promotion, on their surface, of catalytic chemical reactions involving the surrounding solution. Such systems are valuable both from a theoretical perspective, serving as paradigms for nonequilibrium processes, as well as from an application viewpoint, according to which active colloids are envisioned to play the role of carriers (“engines”) in novel lab-on-a-chip devices.The motion of such colloids is intrinsically connected with a “chemical field”, i.e., the distribution near the colloid of the number densities of the various chemical species present in the solution, and with the hydrodynamic flow of the solution around the particle. In most of the envisioned applications, and in virtually all reported experimental studies, the active colloids operate under spatial confinement (e.g., within a microfluidic channel, a drop, a free-standing liquid film, etc.). In such cases, the chemical field and the hydrodynamic flow associated with an active colloid are influenced by any nearby confining surfaces, and these disturbances couple back to the particle. Thus, an effective interaction with the spatial confinement arises. Consequently, the particle is endowed with means to perceive and to respond to its environment. Understanding these effective interactions, finding the key parameters which control them, and designing particles with desired, preconfigured responses to given environments, require interdisciplinary approaches which synergistically integrate methods and knowledge from physics, chemistry, engineering, and materials science.Here we review how, via simple models of chemical activity and self-phoretic motion, progress has recently been made in understanding the basic physical principles behind the complex behaviors exhibited by active particles near interfaces. First, we consider the occurrence of “interface-bounded” steady states of chemically active colloids near simple, nonresponsive interfaces. Examples include particles “sliding” along, or “hovering” above, a hard planar wall while inducing hydrodynamic flow of the solution. These states lay the foundations for concepts like the guidance of particles by the topography of the wall. We continue to discuss responsive interfaces: a suitable chemical patterning of a planar wall allows one to bring the particles into states of motion which are spatially localized (e.g., within chemical stripes or along chemical steps). These occur due to the wall responding to the activity-induced chemical gradients by generating osmotic flows, which encode the surface-chemistry of the wall. Finally, we discuss how, via activity-induced Marangoni stresses, long-ranged effective interactions emerge from the strong hydrodynamic response of fluid interfaces. These examples highlight how in this context a desired behavior can be potentially selected by tuning suitable parameters (e.g., the phoretic mobility of the particle, or the strength of the Marangoni stress at an interface). This can be accomplished via a judicious design of the surface chemistry of the particle and of the boundary, or by the choice of the chemical reaction in solution." @default.
- W2900115778 created "2018-11-16" @default.
- W2900115778 creator A5008266755 @default.
- W2900115778 creator A5028004174 @default.
- W2900115778 creator A5072643291 @default.
- W2900115778 creator A5080618167 @default.
- W2900115778 date "2018-11-07" @default.
- W2900115778 modified "2023-10-13" @default.
- W2900115778 title "Effective Interactions between Chemically Active Colloids and Interfaces" @default.
- W2900115778 cites W1901957165 @default.
- W2900115778 cites W1933884487 @default.
- W2900115778 cites W1965424341 @default.
- W2900115778 cites W1973990284 @default.
- W2900115778 cites W1976741718 @default.
- W2900115778 cites W1980803050 @default.
- W2900115778 cites W1982221208 @default.
- W2900115778 cites W1987350765 @default.
- W2900115778 cites W1994398472 @default.
- W2900115778 cites W1999116645 @default.
- W2900115778 cites W2001962804 @default.
- W2900115778 cites W2002961556 @default.
- W2900115778 cites W2004610991 @default.
- W2900115778 cites W2009556276 @default.
- W2900115778 cites W2014025522 @default.
- W2900115778 cites W2017320949 @default.
- W2900115778 cites W2020158707 @default.
- W2900115778 cites W2025211847 @default.
- W2900115778 cites W2043163044 @default.
- W2900115778 cites W2049933694 @default.
- W2900115778 cites W2051477770 @default.
- W2900115778 cites W2053540206 @default.
- W2900115778 cites W2056169251 @default.
- W2900115778 cites W2057796933 @default.
- W2900115778 cites W2063098299 @default.
- W2900115778 cites W2068675739 @default.
- W2900115778 cites W2069079436 @default.
- W2900115778 cites W2076278541 @default.
- W2900115778 cites W2083657299 @default.
- W2900115778 cites W2087790968 @default.
- W2900115778 cites W2115674892 @default.
- W2900115778 cites W2145491379 @default.
- W2900115778 cites W2151012298 @default.
- W2900115778 cites W2153111793 @default.
- W2900115778 cites W2158467466 @default.
- W2900115778 cites W2161624971 @default.
- W2900115778 cites W2162511286 @default.
- W2900115778 cites W2213714343 @default.
- W2900115778 cites W2259343466 @default.
- W2900115778 cites W2259820476 @default.
- W2900115778 cites W2270533906 @default.
- W2900115778 cites W2304845716 @default.
- W2900115778 cites W2319478107 @default.
- W2900115778 cites W2326589631 @default.
- W2900115778 cites W2369319864 @default.
- W2900115778 cites W2470138081 @default.
- W2900115778 cites W2494511093 @default.
- W2900115778 cites W2518150977 @default.
- W2900115778 cites W2524043285 @default.
- W2900115778 cites W2546993716 @default.
- W2900115778 cites W2561060295 @default.
- W2900115778 cites W2583529801 @default.
- W2900115778 cites W2583676093 @default.
- W2900115778 cites W2611810491 @default.
- W2900115778 cites W2784695611 @default.
- W2900115778 cites W2804647587 @default.
- W2900115778 cites W2806963461 @default.
- W2900115778 cites W2809129684 @default.
- W2900115778 cites W2964062212 @default.
- W2900115778 cites W3037431011 @default.
- W2900115778 cites W3098044051 @default.
- W2900115778 cites W3098393374 @default.
- W2900115778 cites W3099895956 @default.
- W2900115778 cites W3102954936 @default.
- W2900115778 cites W3103205584 @default.
- W2900115778 cites W3103212563 @default.
- W2900115778 cites W3103339725 @default.
- W2900115778 cites W3103455235 @default.
- W2900115778 cites W3104006573 @default.
- W2900115778 cites W3106185196 @default.
- W2900115778 cites W3162426790 @default.
- W2900115778 doi "https://doi.org/10.1021/acs.accounts.8b00237" @default.
- W2900115778 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30403132" @default.
- W2900115778 hasPublicationYear "2018" @default.
- W2900115778 type Work @default.
- W2900115778 sameAs 2900115778 @default.
- W2900115778 citedByCount "34" @default.
- W2900115778 countsByYear W29001157782019 @default.
- W2900115778 countsByYear W29001157782020 @default.
- W2900115778 countsByYear W29001157782021 @default.
- W2900115778 countsByYear W29001157782022 @default.
- W2900115778 countsByYear W29001157782023 @default.
- W2900115778 crossrefType "journal-article" @default.
- W2900115778 hasAuthorship W2900115778A5008266755 @default.
- W2900115778 hasAuthorship W2900115778A5028004174 @default.
- W2900115778 hasAuthorship W2900115778A5072643291 @default.
- W2900115778 hasAuthorship W2900115778A5080618167 @default.
- W2900115778 hasConcept C1034443 @default.
- W2900115778 hasConcept C111368507 @default.