Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900193657> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2900193657 abstract "Truck platooning is gaining more and more interest thanks to the benefits on improved traffic efficiency, reduced fuel consumption and emissions. To gain these benefits, it typically involves small following distances (0.8 s - 0.3 s). Due to the small following distances, the cut-in manoeuvre of target vehicles becomes safety critical and requires the platooning system to take action as soon as possible. This work shows how machine learning can be used for the prediction of a cut-in manoeuvre of a vehicle, which we refer to as target vehicle, from a host vehicle perspective. A real-life driving experiment was performed to measure several cut-ins that were manually annotated. Measurements are gathered with a lidar installed on the host vehicle and consequently used to train several well-known machine learning algorithms such as Logistic Regression, Random Forest, Support Vector Machine, Adaboost and an Ensemble of the previous models. The Ensemble model achieves the best results. This method is capable of predicting cut-ins prior to their occurrence, with an f <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> score of 62.28 % on the test set. Moreover, over 60% of the cut-ins are correctly predicted more than one second before the corresponding vehicle crosses the lane marker." @default.
- W2900193657 created "2018-11-16" @default.
- W2900193657 creator A5043345555 @default.
- W2900193657 creator A5044933355 @default.
- W2900193657 creator A5085776480 @default.
- W2900193657 creator A5089388338 @default.
- W2900193657 date "2018-09-01" @default.
- W2900193657 modified "2023-10-01" @default.
- W2900193657 title "Cut-in Scenario Prediction for Automated Vehicles" @default.
- W2900193657 cites W1941866442 @default.
- W2900193657 cites W1970198743 @default.
- W2900193657 cites W1988790447 @default.
- W2900193657 cites W1994402784 @default.
- W2900193657 cites W2054659636 @default.
- W2900193657 cites W2097261970 @default.
- W2900193657 cites W2104806250 @default.
- W2900193657 cites W2114233248 @default.
- W2900193657 cites W2124984887 @default.
- W2900193657 cites W2146404773 @default.
- W2900193657 cites W2153168083 @default.
- W2900193657 cites W2162966954 @default.
- W2900193657 cites W2411951812 @default.
- W2900193657 cites W2770121223 @default.
- W2900193657 cites W2783545647 @default.
- W2900193657 cites W2903950532 @default.
- W2900193657 cites W4239510810 @default.
- W2900193657 doi "https://doi.org/10.1109/icves.2018.8519594" @default.
- W2900193657 hasPublicationYear "2018" @default.
- W2900193657 type Work @default.
- W2900193657 sameAs 2900193657 @default.
- W2900193657 citedByCount "17" @default.
- W2900193657 countsByYear W29001936572019 @default.
- W2900193657 countsByYear W29001936572020 @default.
- W2900193657 countsByYear W29001936572021 @default.
- W2900193657 countsByYear W29001936572022 @default.
- W2900193657 countsByYear W29001936572023 @default.
- W2900193657 crossrefType "proceedings-article" @default.
- W2900193657 hasAuthorship W2900193657A5043345555 @default.
- W2900193657 hasAuthorship W2900193657A5044933355 @default.
- W2900193657 hasAuthorship W2900193657A5085776480 @default.
- W2900193657 hasAuthorship W2900193657A5089388338 @default.
- W2900193657 hasConcept C119857082 @default.
- W2900193657 hasConcept C12267149 @default.
- W2900193657 hasConcept C126831891 @default.
- W2900193657 hasConcept C127413603 @default.
- W2900193657 hasConcept C141404830 @default.
- W2900193657 hasConcept C154945302 @default.
- W2900193657 hasConcept C169258074 @default.
- W2900193657 hasConcept C171146098 @default.
- W2900193657 hasConcept C177264268 @default.
- W2900193657 hasConcept C18903297 @default.
- W2900193657 hasConcept C199360897 @default.
- W2900193657 hasConcept C41008148 @default.
- W2900193657 hasConcept C45882903 @default.
- W2900193657 hasConcept C52121051 @default.
- W2900193657 hasConcept C86803240 @default.
- W2900193657 hasConceptScore W2900193657C119857082 @default.
- W2900193657 hasConceptScore W2900193657C12267149 @default.
- W2900193657 hasConceptScore W2900193657C126831891 @default.
- W2900193657 hasConceptScore W2900193657C127413603 @default.
- W2900193657 hasConceptScore W2900193657C141404830 @default.
- W2900193657 hasConceptScore W2900193657C154945302 @default.
- W2900193657 hasConceptScore W2900193657C169258074 @default.
- W2900193657 hasConceptScore W2900193657C171146098 @default.
- W2900193657 hasConceptScore W2900193657C177264268 @default.
- W2900193657 hasConceptScore W2900193657C18903297 @default.
- W2900193657 hasConceptScore W2900193657C199360897 @default.
- W2900193657 hasConceptScore W2900193657C41008148 @default.
- W2900193657 hasConceptScore W2900193657C45882903 @default.
- W2900193657 hasConceptScore W2900193657C52121051 @default.
- W2900193657 hasConceptScore W2900193657C86803240 @default.
- W2900193657 hasLocation W29001936571 @default.
- W2900193657 hasOpenAccess W2900193657 @default.
- W2900193657 hasPrimaryLocation W29001936571 @default.
- W2900193657 hasRelatedWork W1996541855 @default.
- W2900193657 hasRelatedWork W2911198546 @default.
- W2900193657 hasRelatedWork W2979979539 @default.
- W2900193657 hasRelatedWork W3127425528 @default.
- W2900193657 hasRelatedWork W3195168932 @default.
- W2900193657 hasRelatedWork W3204641204 @default.
- W2900193657 hasRelatedWork W4249229055 @default.
- W2900193657 hasRelatedWork W4282839226 @default.
- W2900193657 hasRelatedWork W4293069612 @default.
- W2900193657 hasRelatedWork W4311106074 @default.
- W2900193657 isParatext "false" @default.
- W2900193657 isRetracted "false" @default.
- W2900193657 magId "2900193657" @default.
- W2900193657 workType "article" @default.