Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900223378> ?p ?o ?g. }
- W2900223378 endingPage "2155" @default.
- W2900223378 startingPage "2148" @default.
- W2900223378 abstract "This work focuses on the detection of adverse drug reactions (ADRs) in electronic health records (EHRs) written in Spanish. The World Health Organization underlines the importance of reporting ADRs for patients' safety. The fact is that ADRs tend to be under-reported in daily hospital praxis. In this context, automatic solutions based on text mining can help to alleviate the workload of experts. Nevertheless, these solutions pose two challenges: 1) EHRs show high lexical variability, the characterization of the events must be able to deal with unseen words or contexts and 2) ADRs are rare events, hence, the system should be robust against skewed class distribution. To tackle these challenges, deep neural networks seem appropriate because they allow a high-level representation. Specifically, we opted for a joint AB-LSTM network, a sub-class of the bidirectional long short-term memory network. Besides, in an attempt to reinforce lexical variability, we proposed the use of embeddings created using lemmas. We compared this approach with supervised event extraction approaches based on either symbolic or dense representations. Experimental results showed that the joint AB-LSTM approach outperformed previous approaches, achieving an f-measure of 73.3." @default.
- W2900223378 created "2018-11-16" @default.
- W2900223378 creator A5064615378 @default.
- W2900223378 creator A5071070135 @default.
- W2900223378 creator A5076598260 @default.
- W2900223378 date "2019-09-01" @default.
- W2900223378 modified "2023-10-01" @default.
- W2900223378 title "Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery" @default.
- W2900223378 cites W1152166452 @default.
- W2900223378 cites W1672743 @default.
- W2900223378 cites W1922167300 @default.
- W2900223378 cites W2009890917 @default.
- W2900223378 cites W2016944307 @default.
- W2900223378 cites W2064675550 @default.
- W2900223378 cites W2071478164 @default.
- W2900223378 cites W2118280677 @default.
- W2900223378 cites W2119191234 @default.
- W2900223378 cites W2131774270 @default.
- W2900223378 cites W2155454737 @default.
- W2900223378 cites W2158698691 @default.
- W2900223378 cites W2170505850 @default.
- W2900223378 cites W2172767501 @default.
- W2900223378 cites W2209812445 @default.
- W2900223378 cites W2245472176 @default.
- W2900223378 cites W2250539671 @default.
- W2900223378 cites W2250575108 @default.
- W2900223378 cites W2251622960 @default.
- W2900223378 cites W2251905489 @default.
- W2900223378 cites W2296645902 @default.
- W2900223378 cites W2440599146 @default.
- W2900223378 cites W2469314752 @default.
- W2900223378 cites W2479597298 @default.
- W2900223378 cites W2485374661 @default.
- W2900223378 cites W2488984245 @default.
- W2900223378 cites W2508618307 @default.
- W2900223378 cites W2513388359 @default.
- W2900223378 cites W2514798530 @default.
- W2900223378 cites W2517194566 @default.
- W2900223378 cites W2551429935 @default.
- W2900223378 cites W2562564313 @default.
- W2900223378 cites W2564980658 @default.
- W2900223378 cites W2726375170 @default.
- W2900223378 cites W2740783897 @default.
- W2900223378 cites W2759840904 @default.
- W2900223378 cites W2792406544 @default.
- W2900223378 cites W2911964244 @default.
- W2900223378 cites W2962934648 @default.
- W2900223378 cites W2963042536 @default.
- W2900223378 cites W2964026782 @default.
- W2900223378 cites W2964349647 @default.
- W2900223378 cites W4210984920 @default.
- W2900223378 cites W4211159217 @default.
- W2900223378 cites W4212881197 @default.
- W2900223378 cites W4254816979 @default.
- W2900223378 cites W92469554 @default.
- W2900223378 doi "https://doi.org/10.1109/jbhi.2018.2879744" @default.
- W2900223378 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30403644" @default.
- W2900223378 hasPublicationYear "2019" @default.
- W2900223378 type Work @default.
- W2900223378 sameAs 2900223378 @default.
- W2900223378 citedByCount "25" @default.
- W2900223378 countsByYear W29002233782019 @default.
- W2900223378 countsByYear W29002233782020 @default.
- W2900223378 countsByYear W29002233782021 @default.
- W2900223378 countsByYear W29002233782022 @default.
- W2900223378 countsByYear W29002233782023 @default.
- W2900223378 crossrefType "journal-article" @default.
- W2900223378 hasAuthorship W2900223378A5064615378 @default.
- W2900223378 hasAuthorship W2900223378A5071070135 @default.
- W2900223378 hasAuthorship W2900223378A5076598260 @default.
- W2900223378 hasConcept C111919701 @default.
- W2900223378 hasConcept C119857082 @default.
- W2900223378 hasConcept C121332964 @default.
- W2900223378 hasConcept C127413603 @default.
- W2900223378 hasConcept C147168706 @default.
- W2900223378 hasConcept C151730666 @default.
- W2900223378 hasConcept C154945302 @default.
- W2900223378 hasConcept C160735492 @default.
- W2900223378 hasConcept C162324750 @default.
- W2900223378 hasConcept C170154142 @default.
- W2900223378 hasConcept C17744445 @default.
- W2900223378 hasConcept C18555067 @default.
- W2900223378 hasConcept C199360897 @default.
- W2900223378 hasConcept C199539241 @default.
- W2900223378 hasConcept C204321447 @default.
- W2900223378 hasConcept C2776359362 @default.
- W2900223378 hasConcept C2777212361 @default.
- W2900223378 hasConcept C2778476105 @default.
- W2900223378 hasConcept C2779343474 @default.
- W2900223378 hasConcept C2779662365 @default.
- W2900223378 hasConcept C2780801425 @default.
- W2900223378 hasConcept C3019952477 @default.
- W2900223378 hasConcept C41008148 @default.
- W2900223378 hasConcept C50522688 @default.
- W2900223378 hasConcept C50644808 @default.
- W2900223378 hasConcept C62520636 @default.
- W2900223378 hasConcept C86803240 @default.
- W2900223378 hasConcept C94625758 @default.