Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900274816> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2900274816 endingPage "679" @default.
- W2900274816 startingPage "662" @default.
- W2900274816 abstract "In many MapReduce applications, there is an unbalanced distribution of intermediate map-outputs to the reducers. The partitioner determines the load on the reducers. The completion time for a MapReduce job is determined as the slowest reduce task. Under normal conditions assigning a huge amount of data to a task will increase the time required for completion. The current study presents an adaptive algorithm called LAHP (learning automata hash partitioner) that is based on a learning automata game for custom distribution of intermediate key-value pairs to reducers. In this algorithm, a learning automaton on every mapper node is set to control the load on the reducers. This leads to a learning automata game during the execution of a job. This algorithm can partition the intermediate key-value pairs arbitrarily regardless of the statistical distribution of input data and pre-processing. Using the Bonett-test at a confidence level of 95%, the standard deviation ratio of hash-to-LAHP was [0.1, 2858]. This means that LAHP showed much lower dispersion. The results show that the proposed algorithm can successfully distribute any custom load to reducers with an accuracy of over 99% and can speed up the execution of popular applications more than four-fold." @default.
- W2900274816 created "2018-11-16" @default.
- W2900274816 creator A5018095622 @default.
- W2900274816 creator A5021772077 @default.
- W2900274816 creator A5049559884 @default.
- W2900274816 date "2019-10-01" @default.
- W2900274816 modified "2023-10-04" @default.
- W2900274816 title "A novel algorithm for handling reducer side data skew in MapReduce based on a learning automata game" @default.
- W2900274816 cites W1971287449 @default.
- W2900274816 cites W2003138918 @default.
- W2900274816 cites W2005005648 @default.
- W2900274816 cites W2014284407 @default.
- W2900274816 cites W2062187426 @default.
- W2900274816 cites W2080131844 @default.
- W2900274816 cites W2103201239 @default.
- W2900274816 cites W2109574129 @default.
- W2900274816 cites W2128512291 @default.
- W2900274816 cites W2138914910 @default.
- W2900274816 cites W2171647935 @default.
- W2900274816 cites W2173213060 @default.
- W2900274816 cites W2226599271 @default.
- W2900274816 cites W2327798879 @default.
- W2900274816 cites W2514628732 @default.
- W2900274816 cites W2517584820 @default.
- W2900274816 cites W2518931091 @default.
- W2900274816 cites W2596139470 @default.
- W2900274816 cites W2766382480 @default.
- W2900274816 cites W2781260215 @default.
- W2900274816 cites W2800195291 @default.
- W2900274816 cites W2800589482 @default.
- W2900274816 cites W3103284792 @default.
- W2900274816 doi "https://doi.org/10.1016/j.ins.2018.11.007" @default.
- W2900274816 hasPublicationYear "2019" @default.
- W2900274816 type Work @default.
- W2900274816 sameAs 2900274816 @default.
- W2900274816 citedByCount "14" @default.
- W2900274816 countsByYear W29002748162019 @default.
- W2900274816 countsByYear W29002748162020 @default.
- W2900274816 countsByYear W29002748162021 @default.
- W2900274816 countsByYear W29002748162022 @default.
- W2900274816 countsByYear W29002748162023 @default.
- W2900274816 crossrefType "journal-article" @default.
- W2900274816 hasAuthorship W2900274816A5018095622 @default.
- W2900274816 hasAuthorship W2900274816A5021772077 @default.
- W2900274816 hasAuthorship W2900274816A5049559884 @default.
- W2900274816 hasConcept C11413529 @default.
- W2900274816 hasConcept C127413603 @default.
- W2900274816 hasConcept C147176958 @default.
- W2900274816 hasConcept C173608175 @default.
- W2900274816 hasConcept C26517878 @default.
- W2900274816 hasConcept C2776985865 @default.
- W2900274816 hasConcept C38652104 @default.
- W2900274816 hasConcept C41008148 @default.
- W2900274816 hasConcept C43711488 @default.
- W2900274816 hasConcept C76155785 @default.
- W2900274816 hasConcept C80444323 @default.
- W2900274816 hasConcept C99138194 @default.
- W2900274816 hasConceptScore W2900274816C11413529 @default.
- W2900274816 hasConceptScore W2900274816C127413603 @default.
- W2900274816 hasConceptScore W2900274816C147176958 @default.
- W2900274816 hasConceptScore W2900274816C173608175 @default.
- W2900274816 hasConceptScore W2900274816C26517878 @default.
- W2900274816 hasConceptScore W2900274816C2776985865 @default.
- W2900274816 hasConceptScore W2900274816C38652104 @default.
- W2900274816 hasConceptScore W2900274816C41008148 @default.
- W2900274816 hasConceptScore W2900274816C43711488 @default.
- W2900274816 hasConceptScore W2900274816C76155785 @default.
- W2900274816 hasConceptScore W2900274816C80444323 @default.
- W2900274816 hasConceptScore W2900274816C99138194 @default.
- W2900274816 hasLocation W29002748161 @default.
- W2900274816 hasOpenAccess W2900274816 @default.
- W2900274816 hasPrimaryLocation W29002748161 @default.
- W2900274816 hasRelatedWork W1558545464 @default.
- W2900274816 hasRelatedWork W1969186495 @default.
- W2900274816 hasRelatedWork W2074301136 @default.
- W2900274816 hasRelatedWork W2117014006 @default.
- W2900274816 hasRelatedWork W2372170743 @default.
- W2900274816 hasRelatedWork W2485722260 @default.
- W2900274816 hasRelatedWork W2755953185 @default.
- W2900274816 hasRelatedWork W3041052722 @default.
- W2900274816 hasRelatedWork W4233815414 @default.
- W2900274816 hasRelatedWork W575918167 @default.
- W2900274816 hasVolume "501" @default.
- W2900274816 isParatext "false" @default.
- W2900274816 isRetracted "false" @default.
- W2900274816 magId "2900274816" @default.
- W2900274816 workType "article" @default.