Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900297252> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2900297252 abstract "Over the past decade, the study of extrasolar planets has evolved rapidly from plain detection and identification to comprehensive categorization and characterization of exoplanet systems and their atmospheres. Atmospheric retrieval, the inverse modeling technique used to determine an exoplanetary atmosphere's temperature structure and composition from an observed spectrum, is both time-consuming and compute-intensive, requiring complex algorithms that compare thousands to millions of atmospheric models to the observational data to find the most probable values and associated uncertainties for each model parameter. For rocky, terrestrial planets, the retrieved atmospheric composition can give insight into the surface fluxes of gaseous species necessary to maintain the stability of that atmosphere, which may in turn provide insight into the geological and/or biological processes active on the planet. These atmospheres contain many molecules, some of them biosignatures, spectral fingerprints indicative of biological activity, which will become observable with the next generation of telescopes. Runtimes of traditional retrieval models scale with the number of model parameters, so as more molecular species are considered, runtimes can become prohibitively long. Recent advances in machine learning (ML) and computer vision offer new ways to reduce the time to perform a retrieval by orders of magnitude, given a sufficient data set to train with. Here we present an ML-based retrieval framework called Intelligent exoplaNet Atmospheric RetrievAl (INARA) that consists of a Bayesian deep learning model for retrieval and a data set of 3,000,000 synthetic rocky exoplanetary spectra generated using the NASA Planetary Spectrum Generator. Our work represents the first ML retrieval model for rocky, terrestrial exoplanets and the first synthetic data set of terrestrial spectra generated at this scale." @default.
- W2900297252 created "2018-11-16" @default.
- W2900297252 creator A5006407020 @default.
- W2900297252 creator A5030699148 @default.
- W2900297252 creator A5037680611 @default.
- W2900297252 creator A5041899881 @default.
- W2900297252 creator A5042849887 @default.
- W2900297252 creator A5063994783 @default.
- W2900297252 creator A5080101784 @default.
- W2900297252 creator A5082287640 @default.
- W2900297252 creator A5082438942 @default.
- W2900297252 date "2018-11-08" @default.
- W2900297252 modified "2023-09-28" @default.
- W2900297252 title "Bayesian Deep Learning for Exoplanet Atmospheric Retrieval" @default.
- W2900297252 cites W1839094326 @default.
- W2900297252 cites W1904365287 @default.
- W2900297252 cites W1930624869 @default.
- W2900297252 cites W2031887605 @default.
- W2900297252 cites W2042283668 @default.
- W2900297252 cites W2099471712 @default.
- W2900297252 cites W2113074944 @default.
- W2900297252 cites W2144661611 @default.
- W2900297252 cites W2194775991 @default.
- W2900297252 cites W2567590503 @default.
- W2900297252 cites W2792721952 @default.
- W2900297252 cites W2963807203 @default.
- W2900297252 cites W2964059111 @default.
- W2900297252 cites W3099165438 @default.
- W2900297252 cites W3105285383 @default.
- W2900297252 cites W3124069841 @default.
- W2900297252 hasPublicationYear "2018" @default.
- W2900297252 type Work @default.
- W2900297252 sameAs 2900297252 @default.
- W2900297252 citedByCount "5" @default.
- W2900297252 countsByYear W29002972522019 @default.
- W2900297252 countsByYear W29002972522020 @default.
- W2900297252 crossrefType "posted-content" @default.
- W2900297252 hasAuthorship W2900297252A5006407020 @default.
- W2900297252 hasAuthorship W2900297252A5030699148 @default.
- W2900297252 hasAuthorship W2900297252A5037680611 @default.
- W2900297252 hasAuthorship W2900297252A5041899881 @default.
- W2900297252 hasAuthorship W2900297252A5042849887 @default.
- W2900297252 hasAuthorship W2900297252A5063994783 @default.
- W2900297252 hasAuthorship W2900297252A5080101784 @default.
- W2900297252 hasAuthorship W2900297252A5082287640 @default.
- W2900297252 hasAuthorship W2900297252A5082438942 @default.
- W2900297252 hasConcept C121332964 @default.
- W2900297252 hasConcept C1276947 @default.
- W2900297252 hasConcept C153294291 @default.
- W2900297252 hasConcept C154010619 @default.
- W2900297252 hasConcept C154945302 @default.
- W2900297252 hasConcept C163479331 @default.
- W2900297252 hasConcept C2985143073 @default.
- W2900297252 hasConcept C41008148 @default.
- W2900297252 hasConcept C51244244 @default.
- W2900297252 hasConcept C65440619 @default.
- W2900297252 hasConcept C87355193 @default.
- W2900297252 hasConceptScore W2900297252C121332964 @default.
- W2900297252 hasConceptScore W2900297252C1276947 @default.
- W2900297252 hasConceptScore W2900297252C153294291 @default.
- W2900297252 hasConceptScore W2900297252C154010619 @default.
- W2900297252 hasConceptScore W2900297252C154945302 @default.
- W2900297252 hasConceptScore W2900297252C163479331 @default.
- W2900297252 hasConceptScore W2900297252C2985143073 @default.
- W2900297252 hasConceptScore W2900297252C41008148 @default.
- W2900297252 hasConceptScore W2900297252C51244244 @default.
- W2900297252 hasConceptScore W2900297252C65440619 @default.
- W2900297252 hasConceptScore W2900297252C87355193 @default.
- W2900297252 hasOpenAccess W2900297252 @default.
- W2900297252 hasRelatedWork W1550250415 @default.
- W2900297252 hasRelatedWork W2038945539 @default.
- W2900297252 hasRelatedWork W2775039753 @default.
- W2900297252 hasRelatedWork W2900009820 @default.
- W2900297252 hasRelatedWork W2912224532 @default.
- W2900297252 hasRelatedWork W3010395467 @default.
- W2900297252 hasRelatedWork W3033261935 @default.
- W2900297252 hasRelatedWork W3098614922 @default.
- W2900297252 hasRelatedWork W3099172472 @default.
- W2900297252 hasRelatedWork W3099616713 @default.
- W2900297252 hasRelatedWork W3100226698 @default.
- W2900297252 hasRelatedWork W3101037901 @default.
- W2900297252 hasRelatedWork W3101494628 @default.
- W2900297252 hasRelatedWork W3103286350 @default.
- W2900297252 hasRelatedWork W3118227795 @default.
- W2900297252 hasRelatedWork W3136101215 @default.
- W2900297252 hasRelatedWork W3157469392 @default.
- W2900297252 hasRelatedWork W3174865733 @default.
- W2900297252 hasRelatedWork W3202276088 @default.
- W2900297252 hasRelatedWork W575666750 @default.
- W2900297252 isParatext "false" @default.
- W2900297252 isRetracted "false" @default.
- W2900297252 magId "2900297252" @default.
- W2900297252 workType "article" @default.