Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900315566> ?p ?o ?g. }
- W2900315566 endingPage "276" @default.
- W2900315566 startingPage "257" @default.
- W2900315566 abstract "Modal regression is a good alternative of the mean regression, because of its merits of both robustness and high inference efficiency. This paper is concerned with modal regression based statistical inference for semivarying coefficient models with longitudinal data, which include modal regression generalized estimating equations, modal regression empirical likelihood inference procedure for the parametric component and smooth- threshold modal regression generalized estimating equations for variable selection. These methods can incorporate the correlation structure of the longitudinal data and inherit the robustness and efficiency superiorities of the modal regression by choosing an appropriate data adaptive tuning parameter. Under mild conditions, the large sample theoretical properties are established. Simulation studies and real data analysis are also included to illustrate the finite sample performance." @default.
- W2900315566 created "2018-11-16" @default.
- W2900315566 creator A5011645598 @default.
- W2900315566 creator A5014777126 @default.
- W2900315566 creator A5017981465 @default.
- W2900315566 creator A5075760125 @default.
- W2900315566 date "2019-05-01" @default.
- W2900315566 modified "2023-10-18" @default.
- W2900315566 title "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection" @default.
- W2900315566 cites W1560144238 @default.
- W2900315566 cites W1844612278 @default.
- W2900315566 cites W1963927438 @default.
- W2900315566 cites W1966826089 @default.
- W2900315566 cites W1972165087 @default.
- W2900315566 cites W1974234363 @default.
- W2900315566 cites W1981577294 @default.
- W2900315566 cites W1989758362 @default.
- W2900315566 cites W1993869553 @default.
- W2900315566 cites W2000864749 @default.
- W2900315566 cites W2002651345 @default.
- W2900315566 cites W2020082788 @default.
- W2900315566 cites W2020925091 @default.
- W2900315566 cites W2024828559 @default.
- W2900315566 cites W2029489153 @default.
- W2900315566 cites W2039087243 @default.
- W2900315566 cites W2040332190 @default.
- W2900315566 cites W2043770011 @default.
- W2900315566 cites W2054358221 @default.
- W2900315566 cites W2062541416 @default.
- W2900315566 cites W2066979989 @default.
- W2900315566 cites W2068302187 @default.
- W2900315566 cites W2068323421 @default.
- W2900315566 cites W2071753108 @default.
- W2900315566 cites W2074682976 @default.
- W2900315566 cites W2082950433 @default.
- W2900315566 cites W2084993005 @default.
- W2900315566 cites W2088485008 @default.
- W2900315566 cites W2088870374 @default.
- W2900315566 cites W2091615269 @default.
- W2900315566 cites W2092367563 @default.
- W2900315566 cites W2100710950 @default.
- W2900315566 cites W2117049515 @default.
- W2900315566 cites W2123418757 @default.
- W2900315566 cites W2134314782 @default.
- W2900315566 cites W2149860264 @default.
- W2900315566 cites W2153531124 @default.
- W2900315566 cites W2162828528 @default.
- W2900315566 cites W2269854051 @default.
- W2900315566 cites W2953253567 @default.
- W2900315566 cites W3104631984 @default.
- W2900315566 cites W4241170827 @default.
- W2900315566 doi "https://doi.org/10.1016/j.csda.2018.10.010" @default.
- W2900315566 hasPublicationYear "2019" @default.
- W2900315566 type Work @default.
- W2900315566 sameAs 2900315566 @default.
- W2900315566 citedByCount "7" @default.
- W2900315566 countsByYear W29003155662019 @default.
- W2900315566 countsByYear W29003155662020 @default.
- W2900315566 countsByYear W29003155662021 @default.
- W2900315566 countsByYear W29003155662022 @default.
- W2900315566 crossrefType "journal-article" @default.
- W2900315566 hasAuthorship W2900315566A5011645598 @default.
- W2900315566 hasAuthorship W2900315566A5014777126 @default.
- W2900315566 hasAuthorship W2900315566A5017981465 @default.
- W2900315566 hasAuthorship W2900315566A5075760125 @default.
- W2900315566 hasConcept C104317684 @default.
- W2900315566 hasConcept C105795698 @default.
- W2900315566 hasConcept C117251300 @default.
- W2900315566 hasConcept C134261354 @default.
- W2900315566 hasConcept C152877465 @default.
- W2900315566 hasConcept C154945302 @default.
- W2900315566 hasConcept C185592680 @default.
- W2900315566 hasConcept C188027245 @default.
- W2900315566 hasConcept C2776214188 @default.
- W2900315566 hasConcept C33923547 @default.
- W2900315566 hasConcept C41008148 @default.
- W2900315566 hasConcept C55493867 @default.
- W2900315566 hasConcept C63479239 @default.
- W2900315566 hasConcept C71139939 @default.
- W2900315566 hasConcept C83546350 @default.
- W2900315566 hasConceptScore W2900315566C104317684 @default.
- W2900315566 hasConceptScore W2900315566C105795698 @default.
- W2900315566 hasConceptScore W2900315566C117251300 @default.
- W2900315566 hasConceptScore W2900315566C134261354 @default.
- W2900315566 hasConceptScore W2900315566C152877465 @default.
- W2900315566 hasConceptScore W2900315566C154945302 @default.
- W2900315566 hasConceptScore W2900315566C185592680 @default.
- W2900315566 hasConceptScore W2900315566C188027245 @default.
- W2900315566 hasConceptScore W2900315566C2776214188 @default.
- W2900315566 hasConceptScore W2900315566C33923547 @default.
- W2900315566 hasConceptScore W2900315566C41008148 @default.
- W2900315566 hasConceptScore W2900315566C55493867 @default.
- W2900315566 hasConceptScore W2900315566C63479239 @default.
- W2900315566 hasConceptScore W2900315566C71139939 @default.
- W2900315566 hasConceptScore W2900315566C83546350 @default.
- W2900315566 hasFunder F4320321001 @default.
- W2900315566 hasFunder F4320324174 @default.
- W2900315566 hasLocation W29003155661 @default.