Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900320565> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2900320565 abstract "Abstract We are in an era where digital technologies are developing at exponential rates and transforming industries wholesale. The confluence of machine learning advances, accelerated growth in acquired data, on-demand CPU and GPU driven computing such as cloud infrastructure, and other advances in automation and robotics are causing an industrial revolution that some term as the Fourth Industrial Revolution. Given that all these transformative technologies are now available and rapidly reinventing other industries, why is the rate of adoption in the oil and gas industry so slow? How can we best utilize these advances to stop drowning in data and instead transform this data into information and knowledge in order to enable secure and intelligent automation in oilfield operations? The oil and gas industry has attempted, at times successfully, a multitude of big data and analytical techniques to further describe and analyze the systems’ or system of systems’ subsurface interactions. While the proofs of concepts have shown promise, structural difficulties embedded in the design of 20th century systems hinder the implementation of the methods and procedures now part and parcel of the 21st century, driven forth because of the Fourth Industrial Revolution. Unfortunately, 20th century procedures are not able to incorporate 21st century driven processes and methods of conducting business. We outline some of the structural challenges facing the oil and gas industry and describe a few of the solutions that have been developed to help companies in the industry. These include applications from the subsurface in geophysics, completions design, and production. Overcoming data silos in traditional data infrastructure requires a novel approach to cloud infrastructure that respects user access, data privacy, and data residency requirements of companies. Assessing data for quality and for reasonable diversity and variation in order to answer questions posed by oil & gas companies can be quite profound. This critical step prevents companies from spending lots of non-productive time and money trying to develop and tune machine learning algorithms to produce answers that are simply not available in the data. Further, getting data to be in a form suitable to apply artificial intelligence can be quite involved. We illustrate the above challenges by several subsurface examples and then describe the implementation of novel solutions. What we will show is that the oil and gas digital highway presently has data traffic jams preventing it from moving at the speed of light. Removing these traffic jams offers decision-makers the opportunity to move from insight to foresight – looking out in front instead of the rearview mirror to drive change." @default.
- W2900320565 created "2018-11-16" @default.
- W2900320565 creator A5004832629 @default.
- W2900320565 creator A5036839146 @default.
- W2900320565 creator A5055453116 @default.
- W2900320565 date "2018-11-12" @default.
- W2900320565 modified "2023-10-16" @default.
- W2900320565 title "From Insight to Foresight: Knowing How to Apply Artificial Intelligence in the Oil & Gas Industry" @default.
- W2900320565 cites W2000215260 @default.
- W2900320565 cites W2746931442 @default.
- W2900320565 doi "https://doi.org/10.2118/192629-ms" @default.
- W2900320565 hasPublicationYear "2018" @default.
- W2900320565 type Work @default.
- W2900320565 sameAs 2900320565 @default.
- W2900320565 citedByCount "3" @default.
- W2900320565 countsByYear W29003205652019 @default.
- W2900320565 countsByYear W29003205652021 @default.
- W2900320565 countsByYear W29003205652023 @default.
- W2900320565 crossrefType "proceedings-article" @default.
- W2900320565 hasAuthorship W2900320565A5004832629 @default.
- W2900320565 hasAuthorship W2900320565A5036839146 @default.
- W2900320565 hasAuthorship W2900320565A5055453116 @default.
- W2900320565 hasConcept C111919701 @default.
- W2900320565 hasConcept C115901376 @default.
- W2900320565 hasConcept C127413603 @default.
- W2900320565 hasConcept C149635348 @default.
- W2900320565 hasConcept C154945302 @default.
- W2900320565 hasConcept C15744967 @default.
- W2900320565 hasConcept C17744445 @default.
- W2900320565 hasConcept C19417346 @default.
- W2900320565 hasConcept C199539241 @default.
- W2900320565 hasConcept C2522767166 @default.
- W2900320565 hasConcept C2777986313 @default.
- W2900320565 hasConcept C2778132726 @default.
- W2900320565 hasConcept C41008148 @default.
- W2900320565 hasConcept C517468935 @default.
- W2900320565 hasConcept C526740375 @default.
- W2900320565 hasConcept C64848388 @default.
- W2900320565 hasConcept C70587473 @default.
- W2900320565 hasConcept C75684735 @default.
- W2900320565 hasConcept C76155785 @default.
- W2900320565 hasConcept C78519656 @default.
- W2900320565 hasConcept C79974875 @default.
- W2900320565 hasConcept C87717796 @default.
- W2900320565 hasConceptScore W2900320565C111919701 @default.
- W2900320565 hasConceptScore W2900320565C115901376 @default.
- W2900320565 hasConceptScore W2900320565C127413603 @default.
- W2900320565 hasConceptScore W2900320565C149635348 @default.
- W2900320565 hasConceptScore W2900320565C154945302 @default.
- W2900320565 hasConceptScore W2900320565C15744967 @default.
- W2900320565 hasConceptScore W2900320565C17744445 @default.
- W2900320565 hasConceptScore W2900320565C19417346 @default.
- W2900320565 hasConceptScore W2900320565C199539241 @default.
- W2900320565 hasConceptScore W2900320565C2522767166 @default.
- W2900320565 hasConceptScore W2900320565C2777986313 @default.
- W2900320565 hasConceptScore W2900320565C2778132726 @default.
- W2900320565 hasConceptScore W2900320565C41008148 @default.
- W2900320565 hasConceptScore W2900320565C517468935 @default.
- W2900320565 hasConceptScore W2900320565C526740375 @default.
- W2900320565 hasConceptScore W2900320565C64848388 @default.
- W2900320565 hasConceptScore W2900320565C70587473 @default.
- W2900320565 hasConceptScore W2900320565C75684735 @default.
- W2900320565 hasConceptScore W2900320565C76155785 @default.
- W2900320565 hasConceptScore W2900320565C78519656 @default.
- W2900320565 hasConceptScore W2900320565C79974875 @default.
- W2900320565 hasConceptScore W2900320565C87717796 @default.
- W2900320565 hasLocation W29003205651 @default.
- W2900320565 hasOpenAccess W2900320565 @default.
- W2900320565 hasPrimaryLocation W29003205651 @default.
- W2900320565 hasRelatedWork W2508503355 @default.
- W2900320565 hasRelatedWork W2739838019 @default.
- W2900320565 hasRelatedWork W2900320565 @default.
- W2900320565 hasRelatedWork W3007329323 @default.
- W2900320565 hasRelatedWork W3008950251 @default.
- W2900320565 hasRelatedWork W3114771222 @default.
- W2900320565 hasRelatedWork W3179360659 @default.
- W2900320565 hasRelatedWork W4200184607 @default.
- W2900320565 hasRelatedWork W4206291213 @default.
- W2900320565 hasRelatedWork W4287605407 @default.
- W2900320565 isParatext "false" @default.
- W2900320565 isRetracted "false" @default.
- W2900320565 magId "2900320565" @default.
- W2900320565 workType "article" @default.