Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900325101> ?p ?o ?g. }
- W2900325101 endingPage "59" @default.
- W2900325101 startingPage "47" @default.
- W2900325101 abstract "Abstract Design of experiment and active learning strategy are vital for the surrogate-based reliability analysis. However, the existing sampling and modeling methods usually ignore some useful information that can guide the choice of training samples, or heavily rely on the characteristics of surrogates. These lead to the inefficiency of sampling strategies or limit the application respectively. Therefore, this work proposes a failure-pursuing sampling framework, which is able to adopt various surrogate models or active learning strategies. In each iteration, it organically and sequentially takes into account the joint probability density function of random variables, the individual information at candidate points and the improvement of the accuracy of predicted failure probability. To measure the probability of the improvement, a global predicted failure probability error is proposed based on the real-time reliability analysis result. Furthermore, Voronoi diagram is applied to partition the sampling region into some local cells for keeping the uniformity of the training samples. Besides, a model-free response-distance function is developed and combined with the framework to avoid relying on the characteristics of surrogates, such as the statistical information provided by Kriging. Finally, four examples are investigated to demonstrate the applicability, stability and generality of the proposed method." @default.
- W2900325101 created "2018-11-16" @default.
- W2900325101 creator A5006707718 @default.
- W2900325101 creator A5017586277 @default.
- W2900325101 creator A5017886286 @default.
- W2900325101 creator A5028721884 @default.
- W2900325101 creator A5031853620 @default.
- W2900325101 creator A5078026673 @default.
- W2900325101 date "2019-03-01" @default.
- W2900325101 modified "2023-10-08" @default.
- W2900325101 title "A general failure-pursuing sampling framework for surrogate-based reliability analysis" @default.
- W2900325101 cites W1030614780 @default.
- W2900325101 cites W1572480955 @default.
- W2900325101 cites W1846772397 @default.
- W2900325101 cites W1967005434 @default.
- W2900325101 cites W1971995819 @default.
- W2900325101 cites W1973595700 @default.
- W2900325101 cites W1977292205 @default.
- W2900325101 cites W1978031052 @default.
- W2900325101 cites W1978893680 @default.
- W2900325101 cites W1983967136 @default.
- W2900325101 cites W1987168058 @default.
- W2900325101 cites W1989648449 @default.
- W2900325101 cites W1995200351 @default.
- W2900325101 cites W1999091229 @default.
- W2900325101 cites W2007535697 @default.
- W2900325101 cites W2012760529 @default.
- W2900325101 cites W2013114055 @default.
- W2900325101 cites W2019244786 @default.
- W2900325101 cites W2025774046 @default.
- W2900325101 cites W2026833164 @default.
- W2900325101 cites W2028738140 @default.
- W2900325101 cites W2031295804 @default.
- W2900325101 cites W2035985535 @default.
- W2900325101 cites W2040404518 @default.
- W2900325101 cites W2045644796 @default.
- W2900325101 cites W2052106730 @default.
- W2900325101 cites W2057791914 @default.
- W2900325101 cites W2065576828 @default.
- W2900325101 cites W2067829701 @default.
- W2900325101 cites W2068892839 @default.
- W2900325101 cites W2085785960 @default.
- W2900325101 cites W2087935884 @default.
- W2900325101 cites W2093229042 @default.
- W2900325101 cites W2095391079 @default.
- W2900325101 cites W2096285034 @default.
- W2900325101 cites W2151238122 @default.
- W2900325101 cites W2158237256 @default.
- W2900325101 cites W2178011284 @default.
- W2900325101 cites W2195310703 @default.
- W2900325101 cites W2256942714 @default.
- W2900325101 cites W2344914177 @default.
- W2900325101 cites W2345643602 @default.
- W2900325101 cites W2463315649 @default.
- W2900325101 cites W2472783978 @default.
- W2900325101 cites W2518025100 @default.
- W2900325101 cites W2520879866 @default.
- W2900325101 cites W2530757369 @default.
- W2900325101 cites W2583134621 @default.
- W2900325101 cites W2605865864 @default.
- W2900325101 cites W2618016320 @default.
- W2900325101 cites W2730189265 @default.
- W2900325101 cites W2735035435 @default.
- W2900325101 cites W2752137862 @default.
- W2900325101 cites W2757101479 @default.
- W2900325101 cites W2771032237 @default.
- W2900325101 cites W2771051476 @default.
- W2900325101 cites W2772084711 @default.
- W2900325101 cites W2777966713 @default.
- W2900325101 cites W2794318402 @default.
- W2900325101 cites W2802058142 @default.
- W2900325101 cites W2802745567 @default.
- W2900325101 cites W2804752120 @default.
- W2900325101 cites W2809208495 @default.
- W2900325101 cites W2809738900 @default.
- W2900325101 cites W2883662727 @default.
- W2900325101 cites W2896416110 @default.
- W2900325101 cites W2896845269 @default.
- W2900325101 cites W4250317875 @default.
- W2900325101 doi "https://doi.org/10.1016/j.ress.2018.11.002" @default.
- W2900325101 hasPublicationYear "2019" @default.
- W2900325101 type Work @default.
- W2900325101 sameAs 2900325101 @default.
- W2900325101 citedByCount "117" @default.
- W2900325101 countsByYear W29003251012019 @default.
- W2900325101 countsByYear W29003251012020 @default.
- W2900325101 countsByYear W29003251012021 @default.
- W2900325101 countsByYear W29003251012022 @default.
- W2900325101 countsByYear W29003251012023 @default.
- W2900325101 crossrefType "journal-article" @default.
- W2900325101 hasAuthorship W2900325101A5006707718 @default.
- W2900325101 hasAuthorship W2900325101A5017586277 @default.
- W2900325101 hasAuthorship W2900325101A5017886286 @default.
- W2900325101 hasAuthorship W2900325101A5028721884 @default.
- W2900325101 hasAuthorship W2900325101A5031853620 @default.
- W2900325101 hasAuthorship W2900325101A5078026673 @default.
- W2900325101 hasConcept C105795698 @default.
- W2900325101 hasConcept C106131492 @default.