Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900329809> ?p ?o ?g. }
- W2900329809 endingPage "678" @default.
- W2900329809 startingPage "652" @default.
- W2900329809 abstract "Abstract The Empirical Mode Decomposition (EMD) has been applied successfully in many forecasting problems. The Variational Mode Decomposition (VMD), a more effective decomposition technique has been proposed with an aim to avoid the limitations of EMD. This study focuses on two objectives i.e. day ahead stock price prediction and daily trend prediction using Robust Kernel based Extreme Learning Machine (RKELM) integrated with VMD where the kernel function parameters optimized with Differential Evolution (DE) algorithm here named as DE-VMD-RKELM. These experiments have been conducted on BSE S&P 500 Index (BSE), Hang Seng Index (HSI) and Financial Times Stock Exchange 100 Index (FTSE), and the daily price prediction performance of the proposed VMD-RKELM model is measured in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). On the other hand the daily trend prediction which is defined as a classification problem is measured in terms of Percentage of Correct Classification Accuracy (PCCA). The prediction performance of the VMD-RKELM is compared with the performance of robust Extreme Learning Machine (RELM), Extreme Learning Machine integrated with EMD (EMD-RELM). Robust Kernel Extreme Learning Machine integrated with EMD (EMD-RKELM) and two benchmark approaches i.e. Support Vector Regression (SVR) and Autoregressive Moving Average (ARMA). The trend prediction results are compared with Naive–Bayes classifier, ANN (artificial neural network), and SVM (support vector machine). The experimental results obtained from this study for price prediction as well as trend classification performance are promising and the prediction analysis illustrated in this work proves the superiority of the VMD-RKELM model over the other predictive methods." @default.
- W2900329809 created "2018-11-16" @default.
- W2900329809 creator A5025078574 @default.
- W2900329809 creator A5054611665 @default.
- W2900329809 creator A5079452702 @default.
- W2900329809 date "2019-01-01" @default.
- W2900329809 modified "2023-10-04" @default.
- W2900329809 title "Hybrid Variational Mode Decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis" @default.
- W2900329809 cites W1069790386 @default.
- W2900329809 cites W1595159159 @default.
- W2900329809 cites W1636196282 @default.
- W2900329809 cites W1964537798 @default.
- W2900329809 cites W1966499742 @default.
- W2900329809 cites W1970978817 @default.
- W2900329809 cites W1978641127 @default.
- W2900329809 cites W1980223370 @default.
- W2900329809 cites W1980836123 @default.
- W2900329809 cites W1997994299 @default.
- W2900329809 cites W1999233885 @default.
- W2900329809 cites W1999996900 @default.
- W2900329809 cites W2000982976 @default.
- W2900329809 cites W2003205626 @default.
- W2900329809 cites W2006493581 @default.
- W2900329809 cites W2007221293 @default.
- W2900329809 cites W2017212187 @default.
- W2900329809 cites W2021826571 @default.
- W2900329809 cites W2025053102 @default.
- W2900329809 cites W2025291942 @default.
- W2900329809 cites W2028702910 @default.
- W2900329809 cites W2029387902 @default.
- W2900329809 cites W2030132134 @default.
- W2900329809 cites W2053615983 @default.
- W2900329809 cites W2056646884 @default.
- W2900329809 cites W2059852492 @default.
- W2900329809 cites W2073259742 @default.
- W2900329809 cites W2091621250 @default.
- W2900329809 cites W2092281935 @default.
- W2900329809 cites W2093476958 @default.
- W2900329809 cites W2114471530 @default.
- W2900329809 cites W2126831543 @default.
- W2900329809 cites W2137340504 @default.
- W2900329809 cites W2158442843 @default.
- W2900329809 cites W2158663270 @default.
- W2900329809 cites W2283737367 @default.
- W2900329809 cites W2285826949 @default.
- W2900329809 cites W2292129691 @default.
- W2900329809 cites W2315598830 @default.
- W2900329809 cites W2345862676 @default.
- W2900329809 cites W2409641346 @default.
- W2900329809 cites W2465887865 @default.
- W2900329809 cites W2484997644 @default.
- W2900329809 cites W2493814989 @default.
- W2900329809 cites W2513092159 @default.
- W2900329809 cites W2524052612 @default.
- W2900329809 cites W2582163918 @default.
- W2900329809 cites W2612082766 @default.
- W2900329809 cites W2740436868 @default.
- W2900329809 cites W307184769 @default.
- W2900329809 cites W3124375115 @default.
- W2900329809 cites W333233685 @default.
- W2900329809 cites W388323479 @default.
- W2900329809 cites W4241727697 @default.
- W2900329809 cites W789578048 @default.
- W2900329809 doi "https://doi.org/10.1016/j.asoc.2018.11.008" @default.
- W2900329809 hasPublicationYear "2019" @default.
- W2900329809 type Work @default.
- W2900329809 sameAs 2900329809 @default.
- W2900329809 citedByCount "86" @default.
- W2900329809 countsByYear W29003298092019 @default.
- W2900329809 countsByYear W29003298092020 @default.
- W2900329809 countsByYear W29003298092021 @default.
- W2900329809 countsByYear W29003298092022 @default.
- W2900329809 countsByYear W29003298092023 @default.
- W2900329809 crossrefType "journal-article" @default.
- W2900329809 hasAuthorship W2900329809A5025078574 @default.
- W2900329809 hasAuthorship W2900329809A5054611665 @default.
- W2900329809 hasAuthorship W2900329809A5079452702 @default.
- W2900329809 hasConcept C111919701 @default.
- W2900329809 hasConcept C114614502 @default.
- W2900329809 hasConcept C119857082 @default.
- W2900329809 hasConcept C12426560 @default.
- W2900329809 hasConcept C124681953 @default.
- W2900329809 hasConcept C126255220 @default.
- W2900329809 hasConcept C143724316 @default.
- W2900329809 hasConcept C149782125 @default.
- W2900329809 hasConcept C151730666 @default.
- W2900329809 hasConcept C154945302 @default.
- W2900329809 hasConcept C159149176 @default.
- W2900329809 hasConcept C18903297 @default.
- W2900329809 hasConcept C2524010 @default.
- W2900329809 hasConcept C2780150128 @default.
- W2900329809 hasConcept C2988984586 @default.
- W2900329809 hasConcept C33923547 @default.
- W2900329809 hasConcept C41008148 @default.
- W2900329809 hasConcept C48677424 @default.
- W2900329809 hasConcept C50644808 @default.
- W2900329809 hasConcept C74193536 @default.
- W2900329809 hasConcept C86803240 @default.