Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900379892> ?p ?o ?g. }
- W2900379892 endingPage "1747" @default.
- W2900379892 startingPage "1747" @default.
- W2900379892 abstract "Ancillary data, such as soil type, may improve the visible and near-infrared (vis-NIR) estimation of soil organic carbon (SOC); however, they require data collection or expert knowledge. The application of a national soil spectral library to local SOC estimations usually requires soil type information, because the relationships between vis-NIR spectra and SOC from different populations may vary. Using 515 samples of five soil types (genetic soil classification of China, GSCC) from the Chinese soil spectral library (CSSL), we compared three strategies in the vis-NIR estimation of SOC. Different regression models were calibrated using the entire dataset (Strategy I, without using soil type as ancillary data) and the subsets stratified by soil type from CSSL as ancillary data (strategies II and III). In Strategy II, the subsets were stratified by soil type from the CSSL for validation. In Strategy III, the subsets were stratified by spectrally derived soil type for validation. The results showed that 86.72% of the samples were successfully discriminated for the soil types by using the vis-NIR spectra. The coefficients of determination in the prediction ( R p 2 ) of SOC estimation by strategies I, II, and III were 0.74, 0.83, and 0.82, respectively. The stratified calibration strategies (strategies II and III) improved the vis-NIR estimation of SOC. The misclassification of the soil type in the application of Strategy III slightly affected the SOC estimations. Nevertheless, this strategy is inexpensive and beneficial when expert knowledge on soil classification is lacking. We concluded that vis-NIR spectroscopy could be applied to distinguish some soil types in terms of GSCC, which further provided essential and easily accessible ancillary data for the application of stratified calibration strategies in the vis-NIR estimation of SOC." @default.
- W2900379892 created "2018-11-16" @default.
- W2900379892 creator A5000785769 @default.
- W2900379892 creator A5008659449 @default.
- W2900379892 creator A5012342890 @default.
- W2900379892 creator A5021579150 @default.
- W2900379892 creator A5022548657 @default.
- W2900379892 creator A5038412005 @default.
- W2900379892 creator A5038623685 @default.
- W2900379892 creator A5048989648 @default.
- W2900379892 creator A5050515246 @default.
- W2900379892 date "2018-11-06" @default.
- W2900379892 modified "2023-10-18" @default.
- W2900379892 title "Application of Spectrally Derived Soil Type as Ancillary Data to Improve the Estimation of Soil Organic Carbon by Using the Chinese Soil Vis-NIR Spectral Library" @default.
- W2900379892 cites W1531923005 @default.
- W2900379892 cites W1592341820 @default.
- W2900379892 cites W1776391967 @default.
- W2900379892 cites W1934353085 @default.
- W2900379892 cites W1970488785 @default.
- W2900379892 cites W1973273412 @default.
- W2900379892 cites W1973364394 @default.
- W2900379892 cites W1974525970 @default.
- W2900379892 cites W1979030073 @default.
- W2900379892 cites W1981858174 @default.
- W2900379892 cites W1986938560 @default.
- W2900379892 cites W1987972238 @default.
- W2900379892 cites W1990167351 @default.
- W2900379892 cites W1991072106 @default.
- W2900379892 cites W1991455046 @default.
- W2900379892 cites W1992800046 @default.
- W2900379892 cites W1995282053 @default.
- W2900379892 cites W2003554779 @default.
- W2900379892 cites W2010212234 @default.
- W2900379892 cites W2016090370 @default.
- W2900379892 cites W2033560962 @default.
- W2900379892 cites W2042460372 @default.
- W2900379892 cites W2043840432 @default.
- W2900379892 cites W2048016791 @default.
- W2900379892 cites W2051277495 @default.
- W2900379892 cites W2057474369 @default.
- W2900379892 cites W2058248435 @default.
- W2900379892 cites W2059472950 @default.
- W2900379892 cites W2066551002 @default.
- W2900379892 cites W2073858026 @default.
- W2900379892 cites W2078770572 @default.
- W2900379892 cites W2084370905 @default.
- W2900379892 cites W2091160252 @default.
- W2900379892 cites W2101113206 @default.
- W2900379892 cites W2103766443 @default.
- W2900379892 cites W2117822097 @default.
- W2900379892 cites W2123527588 @default.
- W2900379892 cites W2134339355 @default.
- W2900379892 cites W214276163 @default.
- W2900379892 cites W2144189317 @default.
- W2900379892 cites W2156333351 @default.
- W2900379892 cites W2166023984 @default.
- W2900379892 cites W2180277566 @default.
- W2900379892 cites W2192080354 @default.
- W2900379892 cites W2200817828 @default.
- W2900379892 cites W2292439029 @default.
- W2900379892 cites W2323082653 @default.
- W2900379892 cites W2400315447 @default.
- W2900379892 cites W2464502523 @default.
- W2900379892 cites W2542334197 @default.
- W2900379892 cites W2590176535 @default.
- W2900379892 cites W2606654781 @default.
- W2900379892 cites W2779075492 @default.
- W2900379892 cites W2793322197 @default.
- W2900379892 cites W3146257408 @default.
- W2900379892 cites W873619941 @default.
- W2900379892 doi "https://doi.org/10.3390/rs10111747" @default.
- W2900379892 hasPublicationYear "2018" @default.
- W2900379892 type Work @default.
- W2900379892 sameAs 2900379892 @default.
- W2900379892 citedByCount "28" @default.
- W2900379892 countsByYear W29003798922019 @default.
- W2900379892 countsByYear W29003798922020 @default.
- W2900379892 countsByYear W29003798922021 @default.
- W2900379892 countsByYear W29003798922022 @default.
- W2900379892 countsByYear W29003798922023 @default.
- W2900379892 crossrefType "journal-article" @default.
- W2900379892 hasAuthorship W2900379892A5000785769 @default.
- W2900379892 hasAuthorship W2900379892A5008659449 @default.
- W2900379892 hasAuthorship W2900379892A5012342890 @default.
- W2900379892 hasAuthorship W2900379892A5021579150 @default.
- W2900379892 hasAuthorship W2900379892A5022548657 @default.
- W2900379892 hasAuthorship W2900379892A5038412005 @default.
- W2900379892 hasAuthorship W2900379892A5038623685 @default.
- W2900379892 hasAuthorship W2900379892A5048989648 @default.
- W2900379892 hasAuthorship W2900379892A5050515246 @default.
- W2900379892 hasBestOaLocation W29003798921 @default.
- W2900379892 hasConcept C104471815 @default.
- W2900379892 hasConcept C127313418 @default.
- W2900379892 hasConcept C152494472 @default.
- W2900379892 hasConcept C159390177 @default.
- W2900379892 hasConcept C159750122 @default.
- W2900379892 hasConcept C160934017 @default.
- W2900379892 hasConcept C39432304 @default.