Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900380212> ?p ?o ?g. }
- W2900380212 endingPage "321" @default.
- W2900380212 startingPage "311" @default.
- W2900380212 abstract "The most uncertain parameter in determining the stage-discharge relationship of an ungauged stream is the friction factor, a parameter for which a gauged stream can be back-calculated using hydrometric survey data that has been compiled over a wide range of flow conditions. The existing friction factor models for ungauged streams that do not require hydrometric survey data as input can have very large prediction errors. In this study, 415 streamflow events collected from 52 rivers across three continents were assembled to allow for the use of a suitable global dataset size/range to develop a robust model for the prediction of the friction factor in ungauged streams using two machine learning algorithms (Gene Expression Programing (GEP) and Extreme Learning Machine (ELM)). The new GEP and ELM models outperformed existing models with significantly improved R-squared values of 0.76 and 0.78, respectively. The combination of the two input parameters (relative smoothness and the friction slope) allowed the new models to more accurately predict the friction factor for a wider range of streams and flow conditions. The forecasting uncertainty of the developed GEP and ELM models were compared with past models and found to be the least uncertain, with Width Uncertainty Band (WUB) values of ±0.0536 and ±0.0504, respectively. For the first time in this field of research, partial derivative sensitivity analysis was applied to the trends of the friction factor estimation by GEP and ELM. It was found that GEP and ELM models are extremely sensitive to friction slope in comparison with relative smoothness. The GEP and ELM model results for predicting the Darcy–Weisbach friction factor were compared with different existing relationships, and the superior performance of the proposed models was illustrated." @default.
- W2900380212 created "2018-11-16" @default.
- W2900380212 creator A5015639176 @default.
- W2900380212 creator A5028599678 @default.
- W2900380212 creator A5086247042 @default.
- W2900380212 creator A5085356433 @default.
- W2900380212 date "2019-01-01" @default.
- W2900380212 modified "2023-10-17" @default.
- W2900380212 title "Estimation of the Darcy–Weisbach friction factor for ungauged streams using Gene Expression Programming and Extreme Learning Machines" @default.
- W2900380212 cites W1483175216 @default.
- W2900380212 cites W1870612081 @default.
- W2900380212 cites W1967385714 @default.
- W2900380212 cites W1968860276 @default.
- W2900380212 cites W1974138876 @default.
- W2900380212 cites W1976924745 @default.
- W2900380212 cites W1978058261 @default.
- W2900380212 cites W1986255303 @default.
- W2900380212 cites W1994258095 @default.
- W2900380212 cites W1997743396 @default.
- W2900380212 cites W1997780322 @default.
- W2900380212 cites W2003565546 @default.
- W2900380212 cites W2006915051 @default.
- W2900380212 cites W2012359247 @default.
- W2900380212 cites W2013995356 @default.
- W2900380212 cites W2021704225 @default.
- W2900380212 cites W2034461864 @default.
- W2900380212 cites W2039254914 @default.
- W2900380212 cites W2041619882 @default.
- W2900380212 cites W2052888592 @default.
- W2900380212 cites W2061169273 @default.
- W2900380212 cites W2068236198 @default.
- W2900380212 cites W2075001255 @default.
- W2900380212 cites W2092330356 @default.
- W2900380212 cites W2106781984 @default.
- W2900380212 cites W2110141156 @default.
- W2900380212 cites W2111072639 @default.
- W2900380212 cites W2116935344 @default.
- W2900380212 cites W2122522444 @default.
- W2900380212 cites W2129690271 @default.
- W2900380212 cites W2134361106 @default.
- W2900380212 cites W2144614259 @default.
- W2900380212 cites W2158237752 @default.
- W2900380212 cites W2162413692 @default.
- W2900380212 cites W2172164197 @default.
- W2900380212 cites W2267381965 @default.
- W2900380212 cites W2293068877 @default.
- W2900380212 cites W2295055262 @default.
- W2900380212 cites W2297878978 @default.
- W2900380212 cites W2302057904 @default.
- W2900380212 cites W2313350192 @default.
- W2900380212 cites W2325165502 @default.
- W2900380212 cites W2343439329 @default.
- W2900380212 cites W2432155914 @default.
- W2900380212 cites W2559671849 @default.
- W2900380212 cites W2564550138 @default.
- W2900380212 cites W2594465566 @default.
- W2900380212 cites W2609216856 @default.
- W2900380212 cites W2663838451 @default.
- W2900380212 cites W2755155832 @default.
- W2900380212 cites W2784239585 @default.
- W2900380212 cites W2792120977 @default.
- W2900380212 cites W2792557492 @default.
- W2900380212 cites W2884758171 @default.
- W2900380212 cites W771428260 @default.
- W2900380212 cites W941814311 @default.
- W2900380212 doi "https://doi.org/10.1016/j.jhydrol.2018.10.073" @default.
- W2900380212 hasPublicationYear "2019" @default.
- W2900380212 type Work @default.
- W2900380212 sameAs 2900380212 @default.
- W2900380212 citedByCount "30" @default.
- W2900380212 countsByYear W29003802122019 @default.
- W2900380212 countsByYear W29003802122020 @default.
- W2900380212 countsByYear W29003802122021 @default.
- W2900380212 countsByYear W29003802122022 @default.
- W2900380212 countsByYear W29003802122023 @default.
- W2900380212 crossrefType "journal-article" @default.
- W2900380212 hasAuthorship W2900380212A5015639176 @default.
- W2900380212 hasAuthorship W2900380212A5028599678 @default.
- W2900380212 hasAuthorship W2900380212A5085356433 @default.
- W2900380212 hasAuthorship W2900380212A5086247042 @default.
- W2900380212 hasConcept C102634674 @default.
- W2900380212 hasConcept C11413529 @default.
- W2900380212 hasConcept C119857082 @default.
- W2900380212 hasConcept C126645576 @default.
- W2900380212 hasConcept C127413603 @default.
- W2900380212 hasConcept C134306372 @default.
- W2900380212 hasConcept C146978453 @default.
- W2900380212 hasConcept C167928553 @default.
- W2900380212 hasConcept C204323151 @default.
- W2900380212 hasConcept C205649164 @default.
- W2900380212 hasConcept C2524010 @default.
- W2900380212 hasConcept C2780150128 @default.
- W2900380212 hasConcept C31258907 @default.
- W2900380212 hasConcept C33923547 @default.
- W2900380212 hasConcept C38349280 @default.
- W2900380212 hasConcept C41008148 @default.
- W2900380212 hasConcept C42090638 @default.
- W2900380212 hasConcept C50644808 @default.