Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900458319> ?p ?o ?g. }
- W2900458319 endingPage "468" @default.
- W2900458319 startingPage "455" @default.
- W2900458319 abstract "In view of the fact that the traditional laser ultrasonic imaging test takes a long time and cannot achieve large area scanning of rail. This paper explores the possibility of combing the laser-ultrasonic technology and a hybrid intelligent method to fast achieve classification and evaluation of artificial rolling contact fatigue (RCF) defect in different depths. The laser ultrasonic scanning detection system is used to collect data samples from different locations of the defects quickly, and the signals are detected by an interferometer. Once the characteristic information of different rail defects is acquired and trained by Support Vector Machine (SVM), the high efficient and high-precision rail detection can be realized through the input of the feature in the detection process. The hybrid method is composed by Wavelet Packet Transform (WPT), Kernel Principal Component Analysis (KPCA) and SVM. The WPT is used to decompose the signal of surface defect in different frequency bands. The KPCA is used to eliminate the redundancy of the original feature set, thereby reducing the correlation among all the defect features. Wavelet packet time-frequency coefficient (X), energy (E) and local entropy (F) are generated and a new feature (Ynew) is created by fusing X, E and F, as a result of WPT and KPCA. Finally, a support vector machine (SVM) method is used to classify RCF defect in different depths. It implements a fast classification of small data. Compared with single features, fusion feature has the highest accuracy rate up to 98.73%." @default.
- W2900458319 created "2018-11-29" @default.
- W2900458319 creator A5005513917 @default.
- W2900458319 creator A5027398178 @default.
- W2900458319 creator A5034193825 @default.
- W2900458319 creator A5047870570 @default.
- W2900458319 creator A5049357743 @default.
- W2900458319 creator A5073013462 @default.
- W2900458319 date "2019-02-01" @default.
- W2900458319 modified "2023-10-05" @default.
- W2900458319 title "Fast classification for rail defect depths using a hybrid intelligent method" @default.
- W2900458319 cites W1966604228 @default.
- W2900458319 cites W1967352108 @default.
- W2900458319 cites W1980221648 @default.
- W2900458319 cites W1990329334 @default.
- W2900458319 cites W1991139969 @default.
- W2900458319 cites W2007455824 @default.
- W2900458319 cites W2013004403 @default.
- W2900458319 cites W2029990292 @default.
- W2900458319 cites W2038751737 @default.
- W2900458319 cites W2038856709 @default.
- W2900458319 cites W2040189448 @default.
- W2900458319 cites W2041405817 @default.
- W2900458319 cites W2050506751 @default.
- W2900458319 cites W2053525888 @default.
- W2900458319 cites W2068029243 @default.
- W2900458319 cites W2068632145 @default.
- W2900458319 cites W2071586092 @default.
- W2900458319 cites W2075363448 @default.
- W2900458319 cites W2106474383 @default.
- W2900458319 cites W2148407868 @default.
- W2900458319 cites W2554187209 @default.
- W2900458319 cites W2564701447 @default.
- W2900458319 cites W2734431066 @default.
- W2900458319 cites W2735966680 @default.
- W2900458319 cites W2759796772 @default.
- W2900458319 cites W4242684196 @default.
- W2900458319 cites W601563449 @default.
- W2900458319 doi "https://doi.org/10.1016/j.ijleo.2018.11.053" @default.
- W2900458319 hasPublicationYear "2019" @default.
- W2900458319 type Work @default.
- W2900458319 sameAs 2900458319 @default.
- W2900458319 citedByCount "33" @default.
- W2900458319 countsByYear W29004583192019 @default.
- W2900458319 countsByYear W29004583192020 @default.
- W2900458319 countsByYear W29004583192021 @default.
- W2900458319 countsByYear W29004583192022 @default.
- W2900458319 countsByYear W29004583192023 @default.
- W2900458319 crossrefType "journal-article" @default.
- W2900458319 hasAuthorship W2900458319A5005513917 @default.
- W2900458319 hasAuthorship W2900458319A5027398178 @default.
- W2900458319 hasAuthorship W2900458319A5034193825 @default.
- W2900458319 hasAuthorship W2900458319A5047870570 @default.
- W2900458319 hasAuthorship W2900458319A5049357743 @default.
- W2900458319 hasAuthorship W2900458319A5073013462 @default.
- W2900458319 hasConcept C121332964 @default.
- W2900458319 hasConcept C122280245 @default.
- W2900458319 hasConcept C12267149 @default.
- W2900458319 hasConcept C138885662 @default.
- W2900458319 hasConcept C153180895 @default.
- W2900458319 hasConcept C154945302 @default.
- W2900458319 hasConcept C155777637 @default.
- W2900458319 hasConcept C182335926 @default.
- W2900458319 hasConcept C196216189 @default.
- W2900458319 hasConcept C24890656 @default.
- W2900458319 hasConcept C2776401178 @default.
- W2900458319 hasConcept C31972630 @default.
- W2900458319 hasConcept C41008148 @default.
- W2900458319 hasConcept C41895202 @default.
- W2900458319 hasConcept C47432892 @default.
- W2900458319 hasConcept C81288441 @default.
- W2900458319 hasConceptScore W2900458319C121332964 @default.
- W2900458319 hasConceptScore W2900458319C122280245 @default.
- W2900458319 hasConceptScore W2900458319C12267149 @default.
- W2900458319 hasConceptScore W2900458319C138885662 @default.
- W2900458319 hasConceptScore W2900458319C153180895 @default.
- W2900458319 hasConceptScore W2900458319C154945302 @default.
- W2900458319 hasConceptScore W2900458319C155777637 @default.
- W2900458319 hasConceptScore W2900458319C182335926 @default.
- W2900458319 hasConceptScore W2900458319C196216189 @default.
- W2900458319 hasConceptScore W2900458319C24890656 @default.
- W2900458319 hasConceptScore W2900458319C2776401178 @default.
- W2900458319 hasConceptScore W2900458319C31972630 @default.
- W2900458319 hasConceptScore W2900458319C41008148 @default.
- W2900458319 hasConceptScore W2900458319C41895202 @default.
- W2900458319 hasConceptScore W2900458319C47432892 @default.
- W2900458319 hasConceptScore W2900458319C81288441 @default.
- W2900458319 hasFunder F4320321001 @default.
- W2900458319 hasLocation W29004583191 @default.
- W2900458319 hasOpenAccess W2900458319 @default.
- W2900458319 hasPrimaryLocation W29004583191 @default.
- W2900458319 hasRelatedWork W2001666425 @default.
- W2900458319 hasRelatedWork W2046633342 @default.
- W2900458319 hasRelatedWork W2358883208 @default.
- W2900458319 hasRelatedWork W2365287829 @default.
- W2900458319 hasRelatedWork W2370050053 @default.
- W2900458319 hasRelatedWork W2372936409 @default.
- W2900458319 hasRelatedWork W2379553594 @default.