Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900485764> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2900485764 endingPage "58" @default.
- W2900485764 startingPage "46" @default.
- W2900485764 abstract "The principal component analysis network (PCANet) is an unsupervised parsimonious deep network, utilizing principal components as filters in the layers. It creates an amalgamated view of the data by transforming it into column vectors which destroys its spatial structure while obtaining the principal components. In this research, we first propose a tensor-factorization based method referred as the Tensor Factorization Networks (TFNet). The TFNet retains the spatial structure of the data by preserving its individual modes. This presentation provides a minutiae view of the data while extracting matrix factors. However, the above methods are restricted to extract a single representation and thus incurs information loss. To alleviate this information loss with the above methods we propose Hybrid Network (HybridNet) to simultaneously learn filters from both the views of the data. Comprehensive results on multiple benchmark datasets validate the superiority of integrating both the views of the data in our proposed HybridNet." @default.
- W2900485764 created "2018-11-29" @default.
- W2900485764 creator A5036601222 @default.
- W2900485764 creator A5042468879 @default.
- W2900485764 creator A5064683660 @default.
- W2900485764 creator A5071037763 @default.
- W2900485764 date "2018-01-01" @default.
- W2900485764 modified "2023-10-18" @default.
- W2900485764 title "Hybrid Networks: Improving Deep Learning Networks via Integrating Two Views of Images" @default.
- W2900485764 cites W16016350 @default.
- W2900485764 cites W1971877752 @default.
- W2900485764 cites W1994197834 @default.
- W2900485764 cites W2008114373 @default.
- W2900485764 cites W2060225944 @default.
- W2900485764 cites W2072072671 @default.
- W2900485764 cites W2104978738 @default.
- W2900485764 cites W2119412403 @default.
- W2900485764 cites W2131691213 @default.
- W2900485764 cites W2152548630 @default.
- W2900485764 cites W2163922914 @default.
- W2900485764 cites W2164039212 @default.
- W2900485764 cites W2294728286 @default.
- W2900485764 cites W2499468060 @default.
- W2900485764 cites W2621097878 @default.
- W2900485764 cites W3102431071 @default.
- W2900485764 doi "https://doi.org/10.1007/978-3-030-04167-0_5" @default.
- W2900485764 hasPublicationYear "2018" @default.
- W2900485764 type Work @default.
- W2900485764 sameAs 2900485764 @default.
- W2900485764 citedByCount "4" @default.
- W2900485764 countsByYear W29004857642019 @default.
- W2900485764 countsByYear W29004857642020 @default.
- W2900485764 countsByYear W29004857642021 @default.
- W2900485764 countsByYear W29004857642022 @default.
- W2900485764 crossrefType "book-chapter" @default.
- W2900485764 hasAuthorship W2900485764A5036601222 @default.
- W2900485764 hasAuthorship W2900485764A5042468879 @default.
- W2900485764 hasAuthorship W2900485764A5064683660 @default.
- W2900485764 hasAuthorship W2900485764A5071037763 @default.
- W2900485764 hasBestOaLocation W29004857642 @default.
- W2900485764 hasConcept C108583219 @default.
- W2900485764 hasConcept C154945302 @default.
- W2900485764 hasConcept C41008148 @default.
- W2900485764 hasConceptScore W2900485764C108583219 @default.
- W2900485764 hasConceptScore W2900485764C154945302 @default.
- W2900485764 hasConceptScore W2900485764C41008148 @default.
- W2900485764 hasLocation W29004857641 @default.
- W2900485764 hasLocation W29004857642 @default.
- W2900485764 hasOpenAccess W2900485764 @default.
- W2900485764 hasPrimaryLocation W29004857641 @default.
- W2900485764 hasRelatedWork W2126887587 @default.
- W2900485764 hasRelatedWork W2731899572 @default.
- W2900485764 hasRelatedWork W2939353110 @default.
- W2900485764 hasRelatedWork W2941846814 @default.
- W2900485764 hasRelatedWork W2948658236 @default.
- W2900485764 hasRelatedWork W3009238340 @default.
- W2900485764 hasRelatedWork W3118091236 @default.
- W2900485764 hasRelatedWork W3164822677 @default.
- W2900485764 hasRelatedWork W3215138031 @default.
- W2900485764 hasRelatedWork W4230611425 @default.
- W2900485764 isParatext "false" @default.
- W2900485764 isRetracted "false" @default.
- W2900485764 magId "2900485764" @default.
- W2900485764 workType "book-chapter" @default.