Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900496203> ?p ?o ?g. }
- W2900496203 endingPage "80" @default.
- W2900496203 startingPage "64" @default.
- W2900496203 abstract "Abstract In this communication, the study on the effect of Ni2+ substitution on structural, magnetic and electrical transport properties were performed in Pr0.75Na0.25Mn1-xNixO3 (x = 0–0.10) ceramics synthesized using conventional solid-state method. X-ray diffraction patterns showed that all samples were present in single phase and crystallized in orthorhombic structure with Pnma space group. Rietveld refinement analysis revealed unit cell volume slight increase with increase Ni concentration, thereby indicating partial substitution of Ni2+ at Mn3+. The presence majority of Ni2+ states in the compound were confirmed by X-ray photoelectron spectrum. Tolerance factor calculation suggested that Ni substitution exerted no strong effect on structural distortion. For un-doped sample (x = 0), AC susceptibility (χ′) against temperature (T) curve showed paramagnetic (PM)–antiferromagnetic(AFM) behavior at Neel temperature (TN) of approximately 170 K. Furthermore, resistivity (ρ) against temperature (T) curve showed an insulating behavior for the whole measured temperature range. The χ′ against T curve of x = 0 sample showed broad peak at approximately 218 K which was attributed to the onset of charge ordered (CO) state. No such broad peak was observed in Ni-substituted samples which indicated the weakening of CO state. Moreover, χ′ measurements exhibited successful inducement of PM–FM transition with Curie temperature (TC), decreasing from 132 K (x = 0.02) to 92 K (x = 0.08). Electrical resistivity measurement on samples (x = 0.02–0.08) displayed inducement of metal–insulator transition, where transition temperature (TMI) decreased and resistivity increased, with x before re-entrant insulating behavior at x = 0.10. Notably, upturn resistivity was observed below 40 K for x = 0.06 and 0.08 samples. The suppression of CO state and inducement of ferromagnetic-metallic (FMM) state beginning from x = 0.02 sample was attributed to the reduced degree of Jahn–Teller distortion and Coulomb interaction among Mn ions, as well as the presence of ferromagnetic superexchange (FM SE) interaction among Ni2+–O–Mn4+ which improved the alignment charge carrier spins and induced the double-exchange (DE) interaction among Mn3+–O–Mn4+. The decrease in TC and TMI with increased x may be due to the enhanced AFM SE interactions of Mn3+–O–Mn3+, Mn4+–O–Mn4+ and Ni2+–O–Ni2+ which decreased the FM SE interaction of Ni2+–O–Mn4+. Consequently, the effective DE interaction was decreased. In addition, the decreased metallic behavior and re-entrant insulating behavior for x = 0.10 sample was due to the strong AFM interaction between Ni2+ ions which consequently contributed to the suppression of FM SE and DE interactions. The observed upturn resistivity below 40 K for x = 0.06 and 0.08 samples was attributed to the Kondo-like effect which resulted from the interaction between itinerant conduction electron spin and localized spin impurity." @default.
- W2900496203 created "2018-11-29" @default.
- W2900496203 creator A5024377004 @default.
- W2900496203 creator A5036906016 @default.
- W2900496203 creator A5088358651 @default.
- W2900496203 date "2019-01-01" @default.
- W2900496203 modified "2023-09-24" @default.
- W2900496203 title "Inducement of ferromagnetic–metallic phase and magnetoresistance behavior in charged ordered monovalent-doped Pr0.75Na0.25MnO3 manganite by Ni substitution" @default.
- W2900496203 cites W1498989957 @default.
- W2900496203 cites W1512024966 @default.
- W2900496203 cites W1530366408 @default.
- W2900496203 cites W1644489224 @default.
- W2900496203 cites W1964084647 @default.
- W2900496203 cites W1965953741 @default.
- W2900496203 cites W1969922675 @default.
- W2900496203 cites W1971172595 @default.
- W2900496203 cites W1971287453 @default.
- W2900496203 cites W1974432161 @default.
- W2900496203 cites W1980986370 @default.
- W2900496203 cites W1985341203 @default.
- W2900496203 cites W1999747300 @default.
- W2900496203 cites W2003296090 @default.
- W2900496203 cites W2007048594 @default.
- W2900496203 cites W2010722818 @default.
- W2900496203 cites W2013660200 @default.
- W2900496203 cites W2014396328 @default.
- W2900496203 cites W2018149047 @default.
- W2900496203 cites W2025453081 @default.
- W2900496203 cites W2027723064 @default.
- W2900496203 cites W2028796939 @default.
- W2900496203 cites W2029425357 @default.
- W2900496203 cites W2030197571 @default.
- W2900496203 cites W2034784835 @default.
- W2900496203 cites W2036808038 @default.
- W2900496203 cites W2038330883 @default.
- W2900496203 cites W2040220516 @default.
- W2900496203 cites W2043332729 @default.
- W2900496203 cites W2049773047 @default.
- W2900496203 cites W2050957576 @default.
- W2900496203 cites W2058360979 @default.
- W2900496203 cites W2067606262 @default.
- W2900496203 cites W2070059498 @default.
- W2900496203 cites W2071225003 @default.
- W2900496203 cites W2071870566 @default.
- W2900496203 cites W2074582577 @default.
- W2900496203 cites W2077307358 @default.
- W2900496203 cites W2079154313 @default.
- W2900496203 cites W2079183310 @default.
- W2900496203 cites W2087712194 @default.
- W2900496203 cites W2091367370 @default.
- W2900496203 cites W2097167870 @default.
- W2900496203 cites W2131723033 @default.
- W2900496203 cites W2132216432 @default.
- W2900496203 cites W2167590372 @default.
- W2900496203 cites W2235518705 @default.
- W2900496203 cites W2253337099 @default.
- W2900496203 cites W2289541260 @default.
- W2900496203 cites W2333538313 @default.
- W2900496203 cites W2405485496 @default.
- W2900496203 cites W2734144793 @default.
- W2900496203 cites W2761449421 @default.
- W2900496203 cites W2781998986 @default.
- W2900496203 cites W2804359086 @default.
- W2900496203 cites W2950530298 @default.
- W2900496203 cites W3013992874 @default.
- W2900496203 cites W309616336 @default.
- W2900496203 cites W3099047748 @default.
- W2900496203 cites W3105370771 @default.
- W2900496203 cites W4234597487 @default.
- W2900496203 doi "https://doi.org/10.1016/j.solidstatesciences.2018.11.005" @default.
- W2900496203 hasPublicationYear "2019" @default.
- W2900496203 type Work @default.
- W2900496203 sameAs 2900496203 @default.
- W2900496203 citedByCount "18" @default.
- W2900496203 countsByYear W29004962032019 @default.
- W2900496203 countsByYear W29004962032020 @default.
- W2900496203 countsByYear W29004962032021 @default.
- W2900496203 countsByYear W29004962032022 @default.
- W2900496203 countsByYear W29004962032023 @default.
- W2900496203 crossrefType "journal-article" @default.
- W2900496203 hasAuthorship W2900496203A5024377004 @default.
- W2900496203 hasAuthorship W2900496203A5036906016 @default.
- W2900496203 hasAuthorship W2900496203A5088358651 @default.
- W2900496203 hasConcept C115260700 @default.
- W2900496203 hasConcept C117958382 @default.
- W2900496203 hasConcept C121332964 @default.
- W2900496203 hasConcept C121545928 @default.
- W2900496203 hasConcept C178790620 @default.
- W2900496203 hasConcept C185592680 @default.
- W2900496203 hasConcept C191897082 @default.
- W2900496203 hasConcept C192562407 @default.
- W2900496203 hasConcept C199360897 @default.
- W2900496203 hasConcept C26873012 @default.
- W2900496203 hasConcept C2778220771 @default.
- W2900496203 hasConcept C2779700590 @default.
- W2900496203 hasConcept C41008148 @default.
- W2900496203 hasConcept C44280652 @default.
- W2900496203 hasConcept C49040817 @default.