Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900511825> ?p ?o ?g. }
- W2900511825 endingPage "332" @default.
- W2900511825 startingPage "316" @default.
- W2900511825 abstract "The article presents a deep neural network model for the prediction of the compressive strength of foamed concrete. A new, high-order neuron was developed for the deep neural network model to improve the performance of the model. Moreover, the cross-entropy cost function and rectified linear unit activation function were employed to enhance the performance of the model. The present model was then applied to predict the compressive strength of foamed concrete through a given data set, and the obtained results were compared with other machine learning methods including conventional artificial neural network (C-ANN) and second-order artificial neural network (SO-ANN). To further validate the proposed model, a new data set from the laboratory and a given data set of high-performance concrete were used to obtain a higher degree of confidence in the prediction. It is shown that the proposed model obtained a better prediction, compared to other methods. In contrast to C-ANN and SO-ANN, the proposed model can genuinely improve its performance when training a deep neural network model with multiple hidden layers. A sensitivity analysis was conducted to investigate the effects of the input variables on the compressive strength. The results indicated that the compressive strength of foamed concrete is greatly affected by density, followed by the water-to-cement and sand-to-cement ratios. By providing a reliable prediction tool, the proposed model can aid researchers and engineers in mixture design optimization of foamed concrete." @default.
- W2900511825 created "2018-11-29" @default.
- W2900511825 creator A5036710314 @default.
- W2900511825 creator A5042155262 @default.
- W2900511825 creator A5047399180 @default.
- W2900511825 creator A5073069376 @default.
- W2900511825 date "2018-11-16" @default.
- W2900511825 modified "2023-10-12" @default.
- W2900511825 title "Deep neural network with high‐order neuron for the prediction of foamed concrete strength" @default.
- W2900511825 cites W1482021765 @default.
- W2900511825 cites W1530307816 @default.
- W2900511825 cites W1806891645 @default.
- W2900511825 cites W1931516414 @default.
- W2900511825 cites W1970245951 @default.
- W2900511825 cites W1981934934 @default.
- W2900511825 cites W1989906353 @default.
- W2900511825 cites W1997945763 @default.
- W2900511825 cites W2000199939 @default.
- W2900511825 cites W2001036584 @default.
- W2900511825 cites W2004505808 @default.
- W2900511825 cites W2011289188 @default.
- W2900511825 cites W2021914902 @default.
- W2900511825 cites W2025746666 @default.
- W2900511825 cites W2028814625 @default.
- W2900511825 cites W2037272884 @default.
- W2900511825 cites W2038808304 @default.
- W2900511825 cites W2039764797 @default.
- W2900511825 cites W2043680591 @default.
- W2900511825 cites W2050127080 @default.
- W2900511825 cites W2052757243 @default.
- W2900511825 cites W2061933243 @default.
- W2900511825 cites W2076063813 @default.
- W2900511825 cites W2109563136 @default.
- W2900511825 cites W2130103138 @default.
- W2900511825 cites W2136920455 @default.
- W2900511825 cites W2154090420 @default.
- W2900511825 cites W2172859386 @default.
- W2900511825 cites W2281071434 @default.
- W2900511825 cites W2342055797 @default.
- W2900511825 cites W2520567007 @default.
- W2900511825 cites W2552226573 @default.
- W2900511825 cites W2556448491 @default.
- W2900511825 cites W2565217755 @default.
- W2900511825 cites W2586537367 @default.
- W2900511825 cites W2587730909 @default.
- W2900511825 cites W2592887437 @default.
- W2900511825 cites W2599944527 @default.
- W2900511825 cites W2600563890 @default.
- W2900511825 cites W2606384742 @default.
- W2900511825 cites W2616827496 @default.
- W2900511825 cites W2618122237 @default.
- W2900511825 cites W2729478895 @default.
- W2900511825 cites W2738674326 @default.
- W2900511825 cites W2747308919 @default.
- W2900511825 cites W2758887415 @default.
- W2900511825 cites W2765137096 @default.
- W2900511825 cites W2776541877 @default.
- W2900511825 cites W2779270966 @default.
- W2900511825 cites W2790407631 @default.
- W2900511825 cites W2792710564 @default.
- W2900511825 cites W2794137295 @default.
- W2900511825 cites W2799921980 @default.
- W2900511825 cites W2801439730 @default.
- W2900511825 cites W2801492038 @default.
- W2900511825 cites W2805257321 @default.
- W2900511825 cites W2889278436 @default.
- W2900511825 cites W2964148965 @default.
- W2900511825 cites W3125750274 @default.
- W2900511825 cites W4244978990 @default.
- W2900511825 doi "https://doi.org/10.1111/mice.12422" @default.
- W2900511825 hasPublicationYear "2018" @default.
- W2900511825 type Work @default.
- W2900511825 sameAs 2900511825 @default.
- W2900511825 citedByCount "150" @default.
- W2900511825 countsByYear W29005118252019 @default.
- W2900511825 countsByYear W29005118252020 @default.
- W2900511825 countsByYear W29005118252021 @default.
- W2900511825 countsByYear W29005118252022 @default.
- W2900511825 countsByYear W29005118252023 @default.
- W2900511825 crossrefType "journal-article" @default.
- W2900511825 hasAuthorship W2900511825A5036710314 @default.
- W2900511825 hasAuthorship W2900511825A5042155262 @default.
- W2900511825 hasAuthorship W2900511825A5047399180 @default.
- W2900511825 hasAuthorship W2900511825A5073069376 @default.
- W2900511825 hasBestOaLocation W29005118252 @default.
- W2900511825 hasConcept C119857082 @default.
- W2900511825 hasConcept C127413603 @default.
- W2900511825 hasConcept C154945302 @default.
- W2900511825 hasConcept C159985019 @default.
- W2900511825 hasConcept C16910744 @default.
- W2900511825 hasConcept C192562407 @default.
- W2900511825 hasConcept C199360897 @default.
- W2900511825 hasConcept C21200559 @default.
- W2900511825 hasConcept C24326235 @default.
- W2900511825 hasConcept C30407753 @default.
- W2900511825 hasConcept C38365724 @default.
- W2900511825 hasConcept C41008148 @default.
- W2900511825 hasConcept C50644808 @default.