Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900523186> ?p ?o ?g. }
- W2900523186 endingPage "550" @default.
- W2900523186 startingPage "534" @default.
- W2900523186 abstract "The applicability of the traditionally used overall decomposition-based (ODB) sampling technique in the development of forecasting models is controversial. This study first conducts a systematic investigation of the performance of models developed using the ODB sampling technique. A stepwise decomposition-based (SDB) sampling technique that is consistent with actual forecasting practice is then proposed. Moreover, a novel calibration algorithm that couples a two-stage calibration strategy with a shuffled complex evolutionary approach is formulated to help maintain the performance of models. The application of models produced using these different sampling techniques to four gauging stations in China and Canada indicates that (1) the ODB sampling technique that employ the discrete wavelet transform (DWT), empirical mode decomposition (EMD) and variational mode decomposition (VMD) as series decomposition techniques do not produce convincing forecasting models because additional information on the future streamflow that is to be predicted is introduced into the explanatory variables of the samples; (2) the SDB sampling technique strictly excludes information on future streamflow from the explanatory variables and is thus as an appropriate alternative for developing forecasting models; (3) the DWT and VMD techniques benefit models by enhancing their performance; on the other hand, the EMD is unsuitable for use in forecasting, due to the variable number of subseries that result from the implementation of the stepwise decomposition strategy. Finally, methods that can be used to enhance the performance of decomposition-based models and the prediction accuracy of nonstationary streamflow are suggested." @default.
- W2900523186 created "2018-11-29" @default.
- W2900523186 creator A5005589096 @default.
- W2900523186 creator A5009260061 @default.
- W2900523186 creator A5025600307 @default.
- W2900523186 creator A5028116463 @default.
- W2900523186 creator A5046898908 @default.
- W2900523186 creator A5070011755 @default.
- W2900523186 creator A5077080924 @default.
- W2900523186 date "2019-01-01" @default.
- W2900523186 modified "2023-10-17" @default.
- W2900523186 title "Examining the applicability of different sampling techniques in the development of decomposition-based streamflow forecasting models" @default.
- W2900523186 cites W1864468960 @default.
- W2900523186 cites W1972642748 @default.
- W2900523186 cites W1979534414 @default.
- W2900523186 cites W1986143844 @default.
- W2900523186 cites W1990144183 @default.
- W2900523186 cites W1993019441 @default.
- W2900523186 cites W1994325843 @default.
- W2900523186 cites W1996610289 @default.
- W2900523186 cites W2000982976 @default.
- W2900523186 cites W2005664076 @default.
- W2900523186 cites W2006099917 @default.
- W2900523186 cites W2033185628 @default.
- W2900523186 cites W2044781495 @default.
- W2900523186 cites W2058998445 @default.
- W2900523186 cites W2059711001 @default.
- W2900523186 cites W2061377831 @default.
- W2900523186 cites W2073633517 @default.
- W2900523186 cites W2075920507 @default.
- W2900523186 cites W2087120433 @default.
- W2900523186 cites W2089016853 @default.
- W2900523186 cites W2091848193 @default.
- W2900523186 cites W2095276997 @default.
- W2900523186 cites W2096588580 @default.
- W2900523186 cites W2122315938 @default.
- W2900523186 cites W2132984323 @default.
- W2900523186 cites W2133837084 @default.
- W2900523186 cites W2155387468 @default.
- W2900523186 cites W2177959459 @default.
- W2900523186 cites W2219180834 @default.
- W2900523186 cites W2282769325 @default.
- W2900523186 cites W2298765618 @default.
- W2900523186 cites W2426187208 @default.
- W2900523186 cites W2472474259 @default.
- W2900523186 cites W2479359491 @default.
- W2900523186 cites W2484979138 @default.
- W2900523186 cites W2496912619 @default.
- W2900523186 cites W2518119950 @default.
- W2900523186 cites W2577790064 @default.
- W2900523186 cites W2581646934 @default.
- W2900523186 cites W2588819715 @default.
- W2900523186 cites W2634225494 @default.
- W2900523186 cites W2777281562 @default.
- W2900523186 cites W2790394019 @default.
- W2900523186 cites W2801349916 @default.
- W2900523186 cites W2802436364 @default.
- W2900523186 cites W2802466905 @default.
- W2900523186 cites W2815792770 @default.
- W2900523186 cites W2894450533 @default.
- W2900523186 cites W2901603868 @default.
- W2900523186 cites W2901902381 @default.
- W2900523186 doi "https://doi.org/10.1016/j.jhydrol.2018.11.020" @default.
- W2900523186 hasPublicationYear "2019" @default.
- W2900523186 type Work @default.
- W2900523186 sameAs 2900523186 @default.
- W2900523186 citedByCount "85" @default.
- W2900523186 countsByYear W29005231862018 @default.
- W2900523186 countsByYear W29005231862019 @default.
- W2900523186 countsByYear W29005231862020 @default.
- W2900523186 countsByYear W29005231862021 @default.
- W2900523186 countsByYear W29005231862022 @default.
- W2900523186 countsByYear W29005231862023 @default.
- W2900523186 crossrefType "journal-article" @default.
- W2900523186 hasAuthorship W2900523186A5005589096 @default.
- W2900523186 hasAuthorship W2900523186A5009260061 @default.
- W2900523186 hasAuthorship W2900523186A5025600307 @default.
- W2900523186 hasAuthorship W2900523186A5028116463 @default.
- W2900523186 hasAuthorship W2900523186A5046898908 @default.
- W2900523186 hasAuthorship W2900523186A5070011755 @default.
- W2900523186 hasAuthorship W2900523186A5077080924 @default.
- W2900523186 hasConcept C105795698 @default.
- W2900523186 hasConcept C106131492 @default.
- W2900523186 hasConcept C124101348 @default.
- W2900523186 hasConcept C124681953 @default.
- W2900523186 hasConcept C126645576 @default.
- W2900523186 hasConcept C140779682 @default.
- W2900523186 hasConcept C165838908 @default.
- W2900523186 hasConcept C186370098 @default.
- W2900523186 hasConcept C18903297 @default.
- W2900523186 hasConcept C205649164 @default.
- W2900523186 hasConcept C25570617 @default.
- W2900523186 hasConcept C31972630 @default.
- W2900523186 hasConcept C33923547 @default.
- W2900523186 hasConcept C41008148 @default.
- W2900523186 hasConcept C53739315 @default.
- W2900523186 hasConcept C58640448 @default.
- W2900523186 hasConcept C86803240 @default.