Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900547346> ?p ?o ?g. }
- W2900547346 endingPage "984" @default.
- W2900547346 startingPage "973" @default.
- W2900547346 abstract "As the social networking sites get more popular, spammers target these sites to spread spam posts. Twitter is one of the most popular online social networking sites where users communicate and interact on various topics. Most of the current spam filtering methods in Twitter focus on detecting the spammers and blocking them. However, spammers can create a new account and start posting new spam tweets again. So there is a need for robust spam detection techniques to detect the spam at tweet level. These types of techniques can prevent the spam in real time. To detect the spam at tweet level, often features are defined, and appropriate machine learning algorithms are applied in the literature. Recently, deep learning methods are showing fruitful results on several natural language processing tasks. We want to use the potential benefits of these two types of methods for our problem. Toward this, we propose an ensemble approach for spam detection at tweet level. We develop various deep learning models based on convolutional neural networks (CNNs). Five CNNs and one feature-based model are used in the ensemble. Each CNN uses different word embeddings (Glove, Word2vec) to train the model. The feature-based model uses content-based, user-based, and n-gram features. Our approach combines both deep learning and traditional feature-based models using a multilayer neural network which acts as a meta-classifier. We evaluate our method on two data sets, one data set is balanced, and another one is imbalanced. The experimental results show that our proposed method outperforms the existing methods." @default.
- W2900547346 created "2018-11-29" @default.
- W2900547346 creator A5018965092 @default.
- W2900547346 creator A5087152480 @default.
- W2900547346 date "2018-12-01" @default.
- W2900547346 modified "2023-10-06" @default.
- W2900547346 title "A Neural Network-Based Ensemble Approach for Spam Detection in Twitter" @default.
- W2900547346 cites W143803448 @default.
- W2900547346 cites W1526831942 @default.
- W2900547346 cites W1832693441 @default.
- W2900547346 cites W1850562331 @default.
- W2900547346 cites W1980298600 @default.
- W2900547346 cites W2000908731 @default.
- W2900547346 cites W2066055909 @default.
- W2900547346 cites W2090552478 @default.
- W2900547346 cites W2107541186 @default.
- W2900547346 cites W2112796928 @default.
- W2900547346 cites W2163764145 @default.
- W2900547346 cites W2163898372 @default.
- W2900547346 cites W2165701072 @default.
- W2900547346 cites W2169384781 @default.
- W2900547346 cites W2250539671 @default.
- W2900547346 cites W2251771443 @default.
- W2900547346 cites W2295464403 @default.
- W2900547346 cites W2296156100 @default.
- W2900547346 cites W2339765045 @default.
- W2900547346 cites W2552542674 @default.
- W2900547346 cites W2565439473 @default.
- W2900547346 cites W2768745333 @default.
- W2900547346 cites W2963042536 @default.
- W2900547346 cites W3102746519 @default.
- W2900547346 cites W4234894178 @default.
- W2900547346 doi "https://doi.org/10.1109/tcss.2018.2878852" @default.
- W2900547346 hasPublicationYear "2018" @default.
- W2900547346 type Work @default.
- W2900547346 sameAs 2900547346 @default.
- W2900547346 citedByCount "92" @default.
- W2900547346 countsByYear W29005473462019 @default.
- W2900547346 countsByYear W29005473462020 @default.
- W2900547346 countsByYear W29005473462021 @default.
- W2900547346 countsByYear W29005473462022 @default.
- W2900547346 countsByYear W29005473462023 @default.
- W2900547346 crossrefType "journal-article" @default.
- W2900547346 hasAuthorship W2900547346A5018965092 @default.
- W2900547346 hasAuthorship W2900547346A5087152480 @default.
- W2900547346 hasConcept C108583219 @default.
- W2900547346 hasConcept C110875604 @default.
- W2900547346 hasConcept C119857082 @default.
- W2900547346 hasConcept C120665830 @default.
- W2900547346 hasConcept C121332964 @default.
- W2900547346 hasConcept C127735637 @default.
- W2900547346 hasConcept C13672336 @default.
- W2900547346 hasConcept C136764020 @default.
- W2900547346 hasConcept C138885662 @default.
- W2900547346 hasConcept C154945302 @default.
- W2900547346 hasConcept C157310412 @default.
- W2900547346 hasConcept C158955206 @default.
- W2900547346 hasConcept C169258074 @default.
- W2900547346 hasConcept C192209626 @default.
- W2900547346 hasConcept C2776401178 @default.
- W2900547346 hasConcept C2776461190 @default.
- W2900547346 hasConcept C41008148 @default.
- W2900547346 hasConcept C41608201 @default.
- W2900547346 hasConcept C41895202 @default.
- W2900547346 hasConcept C45942800 @default.
- W2900547346 hasConcept C50644808 @default.
- W2900547346 hasConcept C518677369 @default.
- W2900547346 hasConcept C81363708 @default.
- W2900547346 hasConcept C95623464 @default.
- W2900547346 hasConceptScore W2900547346C108583219 @default.
- W2900547346 hasConceptScore W2900547346C110875604 @default.
- W2900547346 hasConceptScore W2900547346C119857082 @default.
- W2900547346 hasConceptScore W2900547346C120665830 @default.
- W2900547346 hasConceptScore W2900547346C121332964 @default.
- W2900547346 hasConceptScore W2900547346C127735637 @default.
- W2900547346 hasConceptScore W2900547346C13672336 @default.
- W2900547346 hasConceptScore W2900547346C136764020 @default.
- W2900547346 hasConceptScore W2900547346C138885662 @default.
- W2900547346 hasConceptScore W2900547346C154945302 @default.
- W2900547346 hasConceptScore W2900547346C157310412 @default.
- W2900547346 hasConceptScore W2900547346C158955206 @default.
- W2900547346 hasConceptScore W2900547346C169258074 @default.
- W2900547346 hasConceptScore W2900547346C192209626 @default.
- W2900547346 hasConceptScore W2900547346C2776401178 @default.
- W2900547346 hasConceptScore W2900547346C2776461190 @default.
- W2900547346 hasConceptScore W2900547346C41008148 @default.
- W2900547346 hasConceptScore W2900547346C41608201 @default.
- W2900547346 hasConceptScore W2900547346C41895202 @default.
- W2900547346 hasConceptScore W2900547346C45942800 @default.
- W2900547346 hasConceptScore W2900547346C50644808 @default.
- W2900547346 hasConceptScore W2900547346C518677369 @default.
- W2900547346 hasConceptScore W2900547346C81363708 @default.
- W2900547346 hasConceptScore W2900547346C95623464 @default.
- W2900547346 hasIssue "4" @default.
- W2900547346 hasLocation W29005473461 @default.
- W2900547346 hasOpenAccess W2900547346 @default.
- W2900547346 hasPrimaryLocation W29005473461 @default.
- W2900547346 hasRelatedWork W2346278349 @default.