Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900577216> ?p ?o ?g. }
- W2900577216 endingPage "747" @default.
- W2900577216 startingPage "733" @default.
- W2900577216 abstract "Real-world applications typically have multiple sparse reconstruction tasks to be optimized. In order to exploit the similar sparsity pattern between different tasks, this paper establishes an evolutionary multitasking framework to simultaneously optimize multiple sparse reconstruction tasks using a single population. In the proposed method, the evolutionary algorithm aims to search the locations of nonzero components or rows instead of searching sparse vector or matrix directly. Then the within-task and between-task genetic transfer operators are employed to reinforce the exchange of genetic material belonging to the same or different tasks. The proposed method can solve multiple measurement vector problems efficiently because the length of decision vector is independent of the number of measurement vectors. Finally, a case study on hyperspectral image unmixing is investigated in an evolutionary multitasking setting. It is natural to consider a sparse unmixing problem in a homogeneous region as a task. Experiments on signal reconstruction and hyperspectral image unmixing demonstrate the effectiveness of the proposed multitasking framework for sparse reconstruction." @default.
- W2900577216 created "2018-11-29" @default.
- W2900577216 creator A5019560977 @default.
- W2900577216 creator A5060723344 @default.
- W2900577216 creator A5064608174 @default.
- W2900577216 creator A5091227928 @default.
- W2900577216 date "2019-10-01" @default.
- W2900577216 modified "2023-09-26" @default.
- W2900577216 title "Evolutionary Multitasking Sparse Reconstruction: Framework and Case Study" @default.
- W2900577216 cites W1124870649 @default.
- W2900577216 cites W1770500012 @default.
- W2900577216 cites W1906374873 @default.
- W2900577216 cites W1964570608 @default.
- W2900577216 cites W1974774078 @default.
- W2900577216 cites W1978567114 @default.
- W2900577216 cites W2004207873 @default.
- W2900577216 cites W2027878671 @default.
- W2900577216 cites W2038420231 @default.
- W2900577216 cites W2044762091 @default.
- W2900577216 cites W2049418899 @default.
- W2900577216 cites W2049808850 @default.
- W2900577216 cites W2069959554 @default.
- W2900577216 cites W2074054045 @default.
- W2900577216 cites W2078204800 @default.
- W2900577216 cites W2107222994 @default.
- W2900577216 cites W2122976738 @default.
- W2900577216 cites W2123023890 @default.
- W2900577216 cites W2125298866 @default.
- W2900577216 cites W2126105956 @default.
- W2900577216 cites W2126527280 @default.
- W2900577216 cites W2126607811 @default.
- W2900577216 cites W2127062304 @default.
- W2900577216 cites W2127271355 @default.
- W2900577216 cites W2129812935 @default.
- W2900577216 cites W2142786738 @default.
- W2900577216 cites W2143381319 @default.
- W2900577216 cites W2143416511 @default.
- W2900577216 cites W2146000945 @default.
- W2900577216 cites W2151649773 @default.
- W2900577216 cites W2153609494 @default.
- W2900577216 cites W2153885347 @default.
- W2900577216 cites W2157321686 @default.
- W2900577216 cites W2162409952 @default.
- W2900577216 cites W2164696938 @default.
- W2900577216 cites W2294818690 @default.
- W2900577216 cites W2329749247 @default.
- W2900577216 cites W2410437504 @default.
- W2900577216 cites W2410677328 @default.
- W2900577216 cites W2413527939 @default.
- W2900577216 cites W2417793772 @default.
- W2900577216 cites W2515844138 @default.
- W2900577216 cites W2595502370 @default.
- W2900577216 cites W2604055362 @default.
- W2900577216 cites W2605715020 @default.
- W2900577216 cites W2768166594 @default.
- W2900577216 cites W2770581177 @default.
- W2900577216 cites W2803331670 @default.
- W2900577216 cites W2896171544 @default.
- W2900577216 cites W2913340405 @default.
- W2900577216 cites W52537375 @default.
- W2900577216 doi "https://doi.org/10.1109/tevc.2018.2881955" @default.
- W2900577216 hasPublicationYear "2019" @default.
- W2900577216 type Work @default.
- W2900577216 sameAs 2900577216 @default.
- W2900577216 citedByCount "57" @default.
- W2900577216 countsByYear W29005772162018 @default.
- W2900577216 countsByYear W29005772162019 @default.
- W2900577216 countsByYear W29005772162020 @default.
- W2900577216 countsByYear W29005772162021 @default.
- W2900577216 countsByYear W29005772162022 @default.
- W2900577216 countsByYear W29005772162023 @default.
- W2900577216 crossrefType "journal-article" @default.
- W2900577216 hasAuthorship W2900577216A5019560977 @default.
- W2900577216 hasAuthorship W2900577216A5060723344 @default.
- W2900577216 hasAuthorship W2900577216A5064608174 @default.
- W2900577216 hasAuthorship W2900577216A5091227928 @default.
- W2900577216 hasConcept C105902424 @default.
- W2900577216 hasConcept C107418235 @default.
- W2900577216 hasConcept C11413529 @default.
- W2900577216 hasConcept C119857082 @default.
- W2900577216 hasConcept C121332964 @default.
- W2900577216 hasConcept C124066611 @default.
- W2900577216 hasConcept C144024400 @default.
- W2900577216 hasConcept C149923435 @default.
- W2900577216 hasConcept C153180895 @default.
- W2900577216 hasConcept C154945302 @default.
- W2900577216 hasConcept C15744967 @default.
- W2900577216 hasConcept C159078339 @default.
- W2900577216 hasConcept C159149176 @default.
- W2900577216 hasConcept C163716315 @default.
- W2900577216 hasConcept C180747234 @default.
- W2900577216 hasConcept C2908647359 @default.
- W2900577216 hasConcept C41008148 @default.
- W2900577216 hasConcept C56372850 @default.
- W2900577216 hasConcept C62520636 @default.
- W2900577216 hasConcept C8880873 @default.
- W2900577216 hasConceptScore W2900577216C105902424 @default.
- W2900577216 hasConceptScore W2900577216C107418235 @default.