Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900599466> ?p ?o ?g. }
- W2900599466 endingPage "696" @default.
- W2900599466 startingPage "679" @default.
- W2900599466 abstract "NADH–quinone oxidoreductase (respiratory complex I) couples NADH-to-quinone electron transfer to the translocation of protons across the membrane. Even though the architecture of the quinone-access channel in the enzyme has been modeled by X-ray crystallography and cryo-EM, conflicting findings raise the question whether the models fully reflect physiologically relevant states present throughout the catalytic cycle. To gain further insights into the structural features of the binding pocket for quinone/inhibitor, we performed chemical biology experiments using bovine heart sub-mitochondrial particles. We synthesized ubiquinones that are oversized (SF–UQs) or lipid-like (PC–UQs) and are highly unlikely to enter and transit the predicted narrow channel. We found that SF–UQs and PC–UQs can be catalytically reduced by complex I, albeit only at moderate or low rates. Moreover, quinone-site inhibitors completely blocked the catalytic reduction and the membrane potential formation coupled to this reduction. Photoaffinity-labeling experiments revealed that amiloride-type inhibitors bind to the interfacial domain of multiple core subunits (49 kDa, ND1, and PSST) and the 39-kDa supernumerary subunit, although the latter does not make up the channel cavity in the current models. The binding of amilorides to the multiple target subunits was remarkably suppressed by other quinone-site inhibitors and SF–UQs. Taken together, the present results are difficult to reconcile with the current channel models. On the basis of comprehensive interpretations of the present results and of previous findings, we discuss the physiological relevance of these models. NADH–quinone oxidoreductase (respiratory complex I) couples NADH-to-quinone electron transfer to the translocation of protons across the membrane. Even though the architecture of the quinone-access channel in the enzyme has been modeled by X-ray crystallography and cryo-EM, conflicting findings raise the question whether the models fully reflect physiologically relevant states present throughout the catalytic cycle. To gain further insights into the structural features of the binding pocket for quinone/inhibitor, we performed chemical biology experiments using bovine heart sub-mitochondrial particles. We synthesized ubiquinones that are oversized (SF–UQs) or lipid-like (PC–UQs) and are highly unlikely to enter and transit the predicted narrow channel. We found that SF–UQs and PC–UQs can be catalytically reduced by complex I, albeit only at moderate or low rates. Moreover, quinone-site inhibitors completely blocked the catalytic reduction and the membrane potential formation coupled to this reduction. Photoaffinity-labeling experiments revealed that amiloride-type inhibitors bind to the interfacial domain of multiple core subunits (49 kDa, ND1, and PSST) and the 39-kDa supernumerary subunit, although the latter does not make up the channel cavity in the current models. The binding of amilorides to the multiple target subunits was remarkably suppressed by other quinone-site inhibitors and SF–UQs. Taken together, the present results are difficult to reconcile with the current channel models. On the basis of comprehensive interpretations of the present results and of previous findings, we discuss the physiological relevance of these models." @default.
- W2900599466 created "2018-11-29" @default.
- W2900599466 creator A5029297763 @default.
- W2900599466 creator A5062352603 @default.
- W2900599466 creator A5065308061 @default.
- W2900599466 creator A5070074910 @default.
- W2900599466 date "2019-01-01" @default.
- W2900599466 modified "2023-10-16" @default.
- W2900599466 title "Exploring the quinone/inhibitor-binding pocket in mitochondrial respiratory complex I by chemical biology approaches" @default.
- W2900599466 cites W1521381364 @default.
- W2900599466 cites W1532909424 @default.
- W2900599466 cites W1616860068 @default.
- W2900599466 cites W1764427377 @default.
- W2900599466 cites W1976314697 @default.
- W2900599466 cites W1978680299 @default.
- W2900599466 cites W1986956461 @default.
- W2900599466 cites W1987119905 @default.
- W2900599466 cites W1992159541 @default.
- W2900599466 cites W2009255184 @default.
- W2900599466 cites W2009520960 @default.
- W2900599466 cites W2009819178 @default.
- W2900599466 cites W2033507589 @default.
- W2900599466 cites W2035153158 @default.
- W2900599466 cites W2041543082 @default.
- W2900599466 cites W2057112891 @default.
- W2900599466 cites W2057325494 @default.
- W2900599466 cites W2058570690 @default.
- W2900599466 cites W2062094321 @default.
- W2900599466 cites W2068119233 @default.
- W2900599466 cites W2070275592 @default.
- W2900599466 cites W2071520356 @default.
- W2900599466 cites W2072978088 @default.
- W2900599466 cites W2080304693 @default.
- W2900599466 cites W2085030699 @default.
- W2900599466 cites W2090567855 @default.
- W2900599466 cites W2090813109 @default.
- W2900599466 cites W2099001896 @default.
- W2900599466 cites W2100837269 @default.
- W2900599466 cites W2118958635 @default.
- W2900599466 cites W2119707316 @default.
- W2900599466 cites W2153334556 @default.
- W2900599466 cites W215543587 @default.
- W2900599466 cites W2164358316 @default.
- W2900599466 cites W2165012926 @default.
- W2900599466 cites W2227396043 @default.
- W2900599466 cites W2278700498 @default.
- W2900599466 cites W2314927134 @default.
- W2900599466 cites W2328499456 @default.
- W2900599466 cites W2328681801 @default.
- W2900599466 cites W2333907952 @default.
- W2900599466 cites W2346383101 @default.
- W2900599466 cites W2507486477 @default.
- W2900599466 cites W2512187837 @default.
- W2900599466 cites W2527259871 @default.
- W2900599466 cites W2558161797 @default.
- W2900599466 cites W2559475714 @default.
- W2900599466 cites W2598524671 @default.
- W2900599466 cites W2734702700 @default.
- W2900599466 cites W2736140192 @default.
- W2900599466 cites W2738238094 @default.
- W2900599466 cites W2745371978 @default.
- W2900599466 cites W2747213856 @default.
- W2900599466 cites W2763734326 @default.
- W2900599466 cites W2770778494 @default.
- W2900599466 cites W2798253762 @default.
- W2900599466 cites W2806917274 @default.
- W2900599466 cites W360035575 @default.
- W2900599466 doi "https://doi.org/10.1074/jbc.ra118.006056" @default.
- W2900599466 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6333890" @default.
- W2900599466 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30425100" @default.
- W2900599466 hasPublicationYear "2019" @default.
- W2900599466 type Work @default.
- W2900599466 sameAs 2900599466 @default.
- W2900599466 citedByCount "21" @default.
- W2900599466 countsByYear W29005994662019 @default.
- W2900599466 countsByYear W29005994662020 @default.
- W2900599466 countsByYear W29005994662021 @default.
- W2900599466 countsByYear W29005994662022 @default.
- W2900599466 countsByYear W29005994662023 @default.
- W2900599466 crossrefType "journal-article" @default.
- W2900599466 hasAuthorship W2900599466A5029297763 @default.
- W2900599466 hasAuthorship W2900599466A5062352603 @default.
- W2900599466 hasAuthorship W2900599466A5065308061 @default.
- W2900599466 hasAuthorship W2900599466A5070074910 @default.
- W2900599466 hasBestOaLocation W29005994661 @default.
- W2900599466 hasConcept C104292427 @default.
- W2900599466 hasConcept C104317684 @default.
- W2900599466 hasConcept C107824862 @default.
- W2900599466 hasConcept C123669783 @default.
- W2900599466 hasConcept C12554922 @default.
- W2900599466 hasConcept C181199279 @default.
- W2900599466 hasConcept C185592680 @default.
- W2900599466 hasConcept C24840226 @default.
- W2900599466 hasConcept C2778581200 @default.
- W2900599466 hasConcept C2779268744 @default.
- W2900599466 hasConcept C2780643102 @default.
- W2900599466 hasConcept C3020377403 @default.
- W2900599466 hasConcept C3020761558 @default.