Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900604824> ?p ?o ?g. }
- W2900604824 endingPage "646" @default.
- W2900604824 startingPage "646" @default.
- W2900604824 abstract "As the size and service requirements of today’s networks gradually increase, large numbers of proprietary devices are deployed, which leads to network complexity, information security crises and makes network service and service provider management increasingly difficult. Network function virtualization (NFV) technology is one solution to this problem. NFV separates network functions from hardware and deploys them as software on a common server. NFV can be used to improve service flexibility and isolate the services provided for each user, thus guaranteeing the security of user data. Therefore, the use of NFV technology includes many problems worth studying. For example, when there is a free choice of network path, one problem is how to choose a service function chain (SFC) that both meets the requirements and offers the service provider maximum profit. Most existing solutions are heuristic algorithms with high time efficiency, or integer linear programming (ILP) algorithms with high accuracy. It’s necessary to design an algorithm that symmetrically considers both time efficiency and accuracy. In this paper, we propose the Q-learning Framework Hybrid Module algorithm (QLFHM), which includes reinforcement learning to solve this SFC deployment problem in dynamic networks. The reinforcement learning module in QLFHM is responsible for the output of alternative paths, while the load balancing module in QLFHM is responsible for picking the optimal solution from them. The results of a comparison simulation experiment on a dynamic network topology show that the proposed algorithm can output the approximate optimal solution in a relatively short time while also considering the network load balance. Thus, it achieves the goal of maximizing the benefit to the service provider." @default.
- W2900604824 created "2018-11-29" @default.
- W2900604824 creator A5014547918 @default.
- W2900604824 creator A5016039620 @default.
- W2900604824 creator A5034803816 @default.
- W2900604824 creator A5053945147 @default.
- W2900604824 creator A5064078720 @default.
- W2900604824 creator A5072241102 @default.
- W2900604824 date "2018-11-16" @default.
- W2900604824 modified "2023-10-11" @default.
- W2900604824 title "A Q-Learning-Based Approach for Deploying Dynamic Service Function Chains" @default.
- W2900604824 cites W1934278965 @default.
- W2900604824 cites W1984401578 @default.
- W2900604824 cites W2000774743 @default.
- W2900604824 cites W2064100832 @default.
- W2900604824 cites W2088431052 @default.
- W2900604824 cites W2164823136 @default.
- W2900604824 cites W2217862297 @default.
- W2900604824 cites W2260783129 @default.
- W2900604824 cites W2339997602 @default.
- W2900604824 cites W2374516805 @default.
- W2900604824 cites W2423913532 @default.
- W2900604824 cites W2433461165 @default.
- W2900604824 cites W2500898769 @default.
- W2900604824 cites W2522375107 @default.
- W2900604824 cites W2561676725 @default.
- W2900604824 cites W2623646697 @default.
- W2900604824 cites W2744244822 @default.
- W2900604824 cites W2751853555 @default.
- W2900604824 cites W2766388131 @default.
- W2900604824 cites W2769605893 @default.
- W2900604824 cites W2781789820 @default.
- W2900604824 cites W2782363571 @default.
- W2900604824 cites W2788163338 @default.
- W2900604824 cites W2789499357 @default.
- W2900604824 cites W2790267400 @default.
- W2900604824 cites W2809203284 @default.
- W2900604824 cites W2810857565 @default.
- W2900604824 cites W2883257329 @default.
- W2900604824 cites W2889809831 @default.
- W2900604824 cites W2892214318 @default.
- W2900604824 cites W2895226249 @default.
- W2900604824 cites W2949869422 @default.
- W2900604824 cites W3100789280 @default.
- W2900604824 cites W597221597 @default.
- W2900604824 doi "https://doi.org/10.3390/sym10110646" @default.
- W2900604824 hasPublicationYear "2018" @default.
- W2900604824 type Work @default.
- W2900604824 sameAs 2900604824 @default.
- W2900604824 citedByCount "31" @default.
- W2900604824 countsByYear W29006048242019 @default.
- W2900604824 countsByYear W29006048242020 @default.
- W2900604824 countsByYear W29006048242021 @default.
- W2900604824 countsByYear W29006048242022 @default.
- W2900604824 countsByYear W29006048242023 @default.
- W2900604824 crossrefType "journal-article" @default.
- W2900604824 hasAuthorship W2900604824A5014547918 @default.
- W2900604824 hasAuthorship W2900604824A5016039620 @default.
- W2900604824 hasAuthorship W2900604824A5034803816 @default.
- W2900604824 hasAuthorship W2900604824A5053945147 @default.
- W2900604824 hasAuthorship W2900604824A5064078720 @default.
- W2900604824 hasAuthorship W2900604824A5072241102 @default.
- W2900604824 hasBestOaLocation W29006048241 @default.
- W2900604824 hasConcept C105795698 @default.
- W2900604824 hasConcept C11413529 @default.
- W2900604824 hasConcept C116537 @default.
- W2900604824 hasConcept C120314980 @default.
- W2900604824 hasConcept C136264566 @default.
- W2900604824 hasConcept C14036430 @default.
- W2900604824 hasConcept C154945302 @default.
- W2900604824 hasConcept C162324750 @default.
- W2900604824 hasConcept C173801870 @default.
- W2900604824 hasConcept C2779618445 @default.
- W2900604824 hasConcept C2780378061 @default.
- W2900604824 hasConcept C2780598303 @default.
- W2900604824 hasConcept C31258907 @default.
- W2900604824 hasConcept C33923547 @default.
- W2900604824 hasConcept C41008148 @default.
- W2900604824 hasConcept C56086750 @default.
- W2900604824 hasConcept C78458016 @default.
- W2900604824 hasConcept C86803240 @default.
- W2900604824 hasConcept C97541855 @default.
- W2900604824 hasConceptScore W2900604824C105795698 @default.
- W2900604824 hasConceptScore W2900604824C11413529 @default.
- W2900604824 hasConceptScore W2900604824C116537 @default.
- W2900604824 hasConceptScore W2900604824C120314980 @default.
- W2900604824 hasConceptScore W2900604824C136264566 @default.
- W2900604824 hasConceptScore W2900604824C14036430 @default.
- W2900604824 hasConceptScore W2900604824C154945302 @default.
- W2900604824 hasConceptScore W2900604824C162324750 @default.
- W2900604824 hasConceptScore W2900604824C173801870 @default.
- W2900604824 hasConceptScore W2900604824C2779618445 @default.
- W2900604824 hasConceptScore W2900604824C2780378061 @default.
- W2900604824 hasConceptScore W2900604824C2780598303 @default.
- W2900604824 hasConceptScore W2900604824C31258907 @default.
- W2900604824 hasConceptScore W2900604824C33923547 @default.
- W2900604824 hasConceptScore W2900604824C41008148 @default.
- W2900604824 hasConceptScore W2900604824C56086750 @default.