Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900692716> ?p ?o ?g. }
- W2900692716 endingPage "176" @default.
- W2900692716 startingPage "167" @default.
- W2900692716 abstract "Cell-loaded hydrogels are frequently applied in cartilage tissue engineering for their biocompatibility, ease of application, and ability to conform to various defect sites. As a bioactive adjunct to the biomaterial, transforming growth factor beta (TGF-β) has been shown to be essential for cell differentiation into a chondrocyte phenotype and maintenance thereof, but the low amounts of endogenous TGF-β in the in vivo joint microenvironment necessitate a mechanism for controlled delivery and release of this growth factor. In this study, TGF-β3 was directly loaded with human bone marrow-derived mesenchymal stem cells (MSCs) into poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PDLLA-PEG) hydrogel, or PDLLA-PEG with the addition of hyaluronic acid (PDLLA/HA), and cultured in vitro. We hypothesize that the inclusion of HA within PDLLA-PEG would result in a controlled release of the loaded TGF-β3 and lead to a robust cartilage formation without the use of TGF-β3 in the culture medium. ELISA analysis showed that TGF-β3 release was effectively slowed by HA incorporation, and retention of TGF-β3 in the PDLLA/HA scaffold was detected by immunohistochemistry for up to 3 weeks. By means of both in vitro culture and in vivo implantation, we found that sulfated glycosaminoglycan production was higher in PDLLA/HA groups with homogenous distribution throughout the scaffold than PDLLA groups. Finally, with an optimal loading of TGF-β3 at 10 μg/mL, as determined by RT-PCR and glycosaminoglycan production, an almost twofold increase in Young’s modulus of the construct was seen over a 4-week period compared to TGF-β3 delivery in the culture medium. Taken together, our results indicate that the direct loading of TGF-β3 and stem cells in PDLLA/HA has the potential to be a one-step point-of-care treatment for cartilage injury. Stem cell-seeded hydrogels are commonly used in cell-based cartilage tissue engineering, but they generally fail to possess physiologically relevant mechanical properties suitable for loading. Moreover, degradation of the hydrogel in vivo with time further decreases mechanical suitability of the hydrogel due in part to the lack of TGF-β3 signaling. In this study, we demonstrated that incorporation of hyaluronic acid (HA) into a physiologically stiff PDLLA-PEG hydrogel allowed for slow release of one-time preloaded TGF-β3, and when loaded with adult mesenchymal stem cells and cultured in vitro, it resulted in higher chondrogenic gene expression and constructs of significantly higher mechanical strength than constructs cultured in conventional TGF-β3-supplemented medium. Similar effects were also observed in constructs implanted in vivo. Our results indicate that direct loading of TGF-β3 combined with HA in the physiologically stiff PDLLA-PEG hydrogel has the potential to be used for one-step point-of-care treatment of cartilage injury." @default.
- W2900692716 created "2018-11-29" @default.
- W2900692716 creator A5016815495 @default.
- W2900692716 creator A5023015562 @default.
- W2900692716 creator A5026064907 @default.
- W2900692716 creator A5028906082 @default.
- W2900692716 creator A5038295992 @default.
- W2900692716 creator A5043189123 @default.
- W2900692716 creator A5057499766 @default.
- W2900692716 creator A5081547692 @default.
- W2900692716 creator A5085341322 @default.
- W2900692716 date "2019-01-01" @default.
- W2900692716 modified "2023-10-13" @default.
- W2900692716 title "Enhancing chondrogenesis and mechanical strength retention in physiologically relevant hydrogels with incorporation of hyaluronic acid and direct loading of TGF-β" @default.
- W2900692716 cites W131970863 @default.
- W2900692716 cites W1677887621 @default.
- W2900692716 cites W1926547437 @default.
- W2900692716 cites W1968251535 @default.
- W2900692716 cites W1971464867 @default.
- W2900692716 cites W1983262993 @default.
- W2900692716 cites W1985366897 @default.
- W2900692716 cites W1988755048 @default.
- W2900692716 cites W1989439022 @default.
- W2900692716 cites W1999848701 @default.
- W2900692716 cites W2013839360 @default.
- W2900692716 cites W2024284492 @default.
- W2900692716 cites W2025044654 @default.
- W2900692716 cites W2025522134 @default.
- W2900692716 cites W2025898370 @default.
- W2900692716 cites W2026425833 @default.
- W2900692716 cites W2037676258 @default.
- W2900692716 cites W2038857063 @default.
- W2900692716 cites W2041172383 @default.
- W2900692716 cites W2055380054 @default.
- W2900692716 cites W2059790498 @default.
- W2900692716 cites W2063977941 @default.
- W2900692716 cites W2070206697 @default.
- W2900692716 cites W2070935955 @default.
- W2900692716 cites W2079095790 @default.
- W2900692716 cites W2087370958 @default.
- W2900692716 cites W2088773289 @default.
- W2900692716 cites W2108038175 @default.
- W2900692716 cites W2118567612 @default.
- W2900692716 cites W2128756433 @default.
- W2900692716 cites W2129573593 @default.
- W2900692716 cites W2129938298 @default.
- W2900692716 cites W2134208433 @default.
- W2900692716 cites W2136000178 @default.
- W2900692716 cites W2147604626 @default.
- W2900692716 cites W2149790590 @default.
- W2900692716 cites W2153320120 @default.
- W2900692716 cites W2159999899 @default.
- W2900692716 cites W2188671405 @default.
- W2900692716 cites W2405694227 @default.
- W2900692716 cites W2616710698 @default.
- W2900692716 cites W2623304404 @default.
- W2900692716 cites W2752559852 @default.
- W2900692716 cites W2781891680 @default.
- W2900692716 cites W4250595858 @default.
- W2900692716 doi "https://doi.org/10.1016/j.actbio.2018.11.022" @default.
- W2900692716 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6733255" @default.
- W2900692716 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30458242" @default.
- W2900692716 hasPublicationYear "2019" @default.
- W2900692716 type Work @default.
- W2900692716 sameAs 2900692716 @default.
- W2900692716 citedByCount "50" @default.
- W2900692716 countsByYear W29006927162019 @default.
- W2900692716 countsByYear W29006927162020 @default.
- W2900692716 countsByYear W29006927162021 @default.
- W2900692716 countsByYear W29006927162022 @default.
- W2900692716 countsByYear W29006927162023 @default.
- W2900692716 crossrefType "journal-article" @default.
- W2900692716 hasAuthorship W2900692716A5016815495 @default.
- W2900692716 hasAuthorship W2900692716A5023015562 @default.
- W2900692716 hasAuthorship W2900692716A5026064907 @default.
- W2900692716 hasAuthorship W2900692716A5028906082 @default.
- W2900692716 hasAuthorship W2900692716A5038295992 @default.
- W2900692716 hasAuthorship W2900692716A5043189123 @default.
- W2900692716 hasAuthorship W2900692716A5057499766 @default.
- W2900692716 hasAuthorship W2900692716A5081547692 @default.
- W2900692716 hasAuthorship W2900692716A5085341322 @default.
- W2900692716 hasBestOaLocation W29006927161 @default.
- W2900692716 hasConcept C105702510 @default.
- W2900692716 hasConcept C108586683 @default.
- W2900692716 hasConcept C118131993 @default.
- W2900692716 hasConcept C12554922 @default.
- W2900692716 hasConcept C136229726 @default.
- W2900692716 hasConcept C150903083 @default.
- W2900692716 hasConcept C153074725 @default.
- W2900692716 hasConcept C171250308 @default.
- W2900692716 hasConcept C185592680 @default.
- W2900692716 hasConcept C188027245 @default.
- W2900692716 hasConcept C191897082 @default.
- W2900692716 hasConcept C192562407 @default.
- W2900692716 hasConcept C198826908 @default.
- W2900692716 hasConcept C202751555 @default.
- W2900692716 hasConcept C207001950 @default.
- W2900692716 hasConcept C2776964284 @default.