Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900694037> ?p ?o ?g. }
- W2900694037 abstract "Machine learning is one of the most prevalent techniques in recent decades which has been widely applied in various fields. Among them, the applications that detect and defend potential adversarial attacks using machine learning method provide promising solutions in cybersecurity. At the same time, machine learning algorithms and systems are vulnerable to multiple security threats. In this paper, we revisit certain literatures and present a comprehensive survey from two respects, application of machine learning on cybersecurity and reliability and security of machine learning system. We then overview security issues of mobile AI devices and propose two notable focus, which are worthy in-depth studies in future. Researchers can regard this survey as a navigating reference in both machine learning and cybersecurity fields." @default.
- W2900694037 created "2018-11-29" @default.
- W2900694037 creator A5039586121 @default.
- W2900694037 creator A5059465308 @default.
- W2900694037 creator A5066586426 @default.
- W2900694037 creator A5083017828 @default.
- W2900694037 date "2018-08-01" @default.
- W2900694037 modified "2023-10-17" @default.
- W2900694037 title "When Machine Learning meets Security Issues: A survey" @default.
- W2900694037 cites W1590456070 @default.
- W2900694037 cites W1642882198 @default.
- W2900694037 cites W1973400823 @default.
- W2900694037 cites W1984662960 @default.
- W2900694037 cites W2014466911 @default.
- W2900694037 cites W2018061979 @default.
- W2900694037 cites W2026258420 @default.
- W2900694037 cites W2068458211 @default.
- W2900694037 cites W2088454850 @default.
- W2900694037 cites W2089115299 @default.
- W2900694037 cites W2096118443 @default.
- W2900694037 cites W2097273107 @default.
- W2900694037 cites W2113449956 @default.
- W2900694037 cites W2137893082 @default.
- W2900694037 cites W2139688842 @default.
- W2900694037 cites W2152800262 @default.
- W2900694037 cites W2155915275 @default.
- W2900694037 cites W2167529272 @default.
- W2900694037 cites W2210209119 @default.
- W2900694037 cites W2308766372 @default.
- W2900694037 cites W2342408547 @default.
- W2900694037 cites W2501070846 @default.
- W2900694037 cites W2508108853 @default.
- W2900694037 cites W2512472178 @default.
- W2900694037 cites W2518820464 @default.
- W2900694037 cites W2522146934 @default.
- W2900694037 cites W2535690855 @default.
- W2900694037 cites W2547043772 @default.
- W2900694037 cites W2560932476 @default.
- W2900694037 cites W2574797807 @default.
- W2900694037 cites W2575826088 @default.
- W2900694037 cites W2583501687 @default.
- W2900694037 cites W2601682974 @default.
- W2900694037 cites W2603766943 @default.
- W2900694037 cites W2618014102 @default.
- W2900694037 cites W2731865152 @default.
- W2900694037 cites W2746600820 @default.
- W2900694037 cites W2752241832 @default.
- W2900694037 cites W2752574672 @default.
- W2900694037 cites W2760355118 @default.
- W2900694037 cites W2764180778 @default.
- W2900694037 cites W2765162057 @default.
- W2900694037 cites W2765309851 @default.
- W2900694037 cites W2765325683 @default.
- W2900694037 cites W2765505515 @default.
- W2900694037 cites W2765629210 @default.
- W2900694037 cites W2766353929 @default.
- W2900694037 cites W2766473095 @default.
- W2900694037 cites W2767023880 @default.
- W2900694037 cites W2783141341 @default.
- W2900694037 cites W2786232786 @default.
- W2900694037 cites W2789326120 @default.
- W2900694037 cites W2790851046 @default.
- W2900694037 cites W2791319131 @default.
- W2900694037 cites W2793784469 @default.
- W2900694037 cites W2963564844 @default.
- W2900694037 cites W2963626858 @default.
- W2900694037 cites W2963857521 @default.
- W2900694037 cites W2964043980 @default.
- W2900694037 cites W2964082701 @default.
- W2900694037 doi "https://doi.org/10.1109/iisr.2018.8535799" @default.
- W2900694037 hasPublicationYear "2018" @default.
- W2900694037 type Work @default.
- W2900694037 sameAs 2900694037 @default.
- W2900694037 citedByCount "14" @default.
- W2900694037 countsByYear W29006940372019 @default.
- W2900694037 countsByYear W29006940372020 @default.
- W2900694037 countsByYear W29006940372021 @default.
- W2900694037 countsByYear W29006940372022 @default.
- W2900694037 countsByYear W29006940372023 @default.
- W2900694037 crossrefType "proceedings-article" @default.
- W2900694037 hasAuthorship W2900694037A5039586121 @default.
- W2900694037 hasAuthorship W2900694037A5059465308 @default.
- W2900694037 hasAuthorship W2900694037A5066586426 @default.
- W2900694037 hasAuthorship W2900694037A5083017828 @default.
- W2900694037 hasConcept C2522767166 @default.
- W2900694037 hasConcept C38652104 @default.
- W2900694037 hasConcept C41008148 @default.
- W2900694037 hasConcept C527648132 @default.
- W2900694037 hasConceptScore W2900694037C2522767166 @default.
- W2900694037 hasConceptScore W2900694037C38652104 @default.
- W2900694037 hasConceptScore W2900694037C41008148 @default.
- W2900694037 hasConceptScore W2900694037C527648132 @default.
- W2900694037 hasLocation W29006940371 @default.
- W2900694037 hasOpenAccess W2900694037 @default.
- W2900694037 hasPrimaryLocation W29006940371 @default.
- W2900694037 hasRelatedWork W1617303238 @default.
- W2900694037 hasRelatedWork W182317985 @default.
- W2900694037 hasRelatedWork W1868045849 @default.
- W2900694037 hasRelatedWork W1996408511 @default.
- W2900694037 hasRelatedWork W2030496847 @default.