Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900696906> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2900696906 endingPage "686" @default.
- W2900696906 startingPage "677" @default.
- W2900696906 abstract "This note presents an operational measure of fat-tailedness for univariate probability distributions, in $[0,1]$ where 0 is maximally thin-tailed (Gaussian) and 1 is maximally fat-tailed. Among others,1) it helps assess the sample size needed to establish a comparative $n$ needed for statistical significance, 2) allows practical comparisons across classes of fat-tailed distributions, 3) helps understand some inconsistent attributes of the lognormal, pending on the parametrization of its scale parameter. The literature is rich for what concerns asymptotic behavior, but there is a large void for finite values of $n$, those needed for operational purposes. Conventional measures of fat-tailedness, namely 1) the tail index for the power law class, and 2) Kurtosis for finite moment distributions fail to apply to some distributions, and do not allow comparisons across classes and parametrization, that is between power laws outside the Levy-Stable basin, or power laws to distributions in other classes, or power laws for different number of summands. How can one compare a sum of 100 Student T distributed random variables with 3 degrees of freedom to one in a Levy-Stable or a Lognormal class? How can one compare a sum of 100 Student T with 3 degrees of freedom to a single Student T with 2 degrees of freedom? We propose an operational and heuristic measure that allow us to compare $n$-summed independent variables under all distributions with finite first moment. The method is based on the rate of convergence of the Law of Large numbers for finite sums, $n$-summands specifically. We get either explicit expressions or simulation results and bounds for the lognormal, exponential, Pareto, and the Student T distributions in their various calibrations --in addition to the general Pearson classes." @default.
- W2900696906 created "2018-11-29" @default.
- W2900696906 creator A5051286221 @default.
- W2900696906 date "2019-04-01" @default.
- W2900696906 modified "2023-10-18" @default.
- W2900696906 title "How much data do you need? An operational, pre-asymptotic metric for fat-tailedness" @default.
- W2900696906 cites W1976624377 @default.
- W2900696906 cites W1982506807 @default.
- W2900696906 cites W1988084021 @default.
- W2900696906 cites W2001695320 @default.
- W2900696906 cites W2036031572 @default.
- W2900696906 cites W2059584073 @default.
- W2900696906 cites W2072285612 @default.
- W2900696906 cites W2081717017 @default.
- W2900696906 cites W2102567944 @default.
- W2900696906 cites W2113437214 @default.
- W2900696906 cites W2128442773 @default.
- W2900696906 cites W2138336715 @default.
- W2900696906 cites W2142437411 @default.
- W2900696906 cites W2147656391 @default.
- W2900696906 cites W2156715130 @default.
- W2900696906 cites W2158554227 @default.
- W2900696906 cites W2161397058 @default.
- W2900696906 cites W2163969674 @default.
- W2900696906 cites W2600099212 @default.
- W2900696906 cites W2892038650 @default.
- W2900696906 cites W3124345898 @default.
- W2900696906 cites W3125058924 @default.
- W2900696906 cites W3125847176 @default.
- W2900696906 cites W4243945555 @default.
- W2900696906 doi "https://doi.org/10.1016/j.ijforecast.2018.10.003" @default.
- W2900696906 hasPublicationYear "2019" @default.
- W2900696906 type Work @default.
- W2900696906 sameAs 2900696906 @default.
- W2900696906 citedByCount "8" @default.
- W2900696906 countsByYear W29006969062020 @default.
- W2900696906 countsByYear W29006969062021 @default.
- W2900696906 countsByYear W29006969062022 @default.
- W2900696906 countsByYear W29006969062023 @default.
- W2900696906 crossrefType "journal-article" @default.
- W2900696906 hasAuthorship W2900696906A5051286221 @default.
- W2900696906 hasBestOaLocation W29006969062 @default.
- W2900696906 hasConcept C105795698 @default.
- W2900696906 hasConcept C121332964 @default.
- W2900696906 hasConcept C121864883 @default.
- W2900696906 hasConcept C122123141 @default.
- W2900696906 hasConcept C149441793 @default.
- W2900696906 hasConcept C151620405 @default.
- W2900696906 hasConcept C163716315 @default.
- W2900696906 hasConcept C166963901 @default.
- W2900696906 hasConcept C179254644 @default.
- W2900696906 hasConcept C185767445 @default.
- W2900696906 hasConcept C208081375 @default.
- W2900696906 hasConcept C28826006 @default.
- W2900696906 hasConcept C33923547 @default.
- W2900696906 hasConcept C62520636 @default.
- W2900696906 hasConcept C74650414 @default.
- W2900696906 hasConcept C87040749 @default.
- W2900696906 hasConcept C91716921 @default.
- W2900696906 hasConceptScore W2900696906C105795698 @default.
- W2900696906 hasConceptScore W2900696906C121332964 @default.
- W2900696906 hasConceptScore W2900696906C121864883 @default.
- W2900696906 hasConceptScore W2900696906C122123141 @default.
- W2900696906 hasConceptScore W2900696906C149441793 @default.
- W2900696906 hasConceptScore W2900696906C151620405 @default.
- W2900696906 hasConceptScore W2900696906C163716315 @default.
- W2900696906 hasConceptScore W2900696906C166963901 @default.
- W2900696906 hasConceptScore W2900696906C179254644 @default.
- W2900696906 hasConceptScore W2900696906C185767445 @default.
- W2900696906 hasConceptScore W2900696906C208081375 @default.
- W2900696906 hasConceptScore W2900696906C28826006 @default.
- W2900696906 hasConceptScore W2900696906C33923547 @default.
- W2900696906 hasConceptScore W2900696906C62520636 @default.
- W2900696906 hasConceptScore W2900696906C74650414 @default.
- W2900696906 hasConceptScore W2900696906C87040749 @default.
- W2900696906 hasConceptScore W2900696906C91716921 @default.
- W2900696906 hasIssue "2" @default.
- W2900696906 hasLocation W29006969061 @default.
- W2900696906 hasLocation W29006969062 @default.
- W2900696906 hasLocation W29006969063 @default.
- W2900696906 hasOpenAccess W2900696906 @default.
- W2900696906 hasPrimaryLocation W29006969061 @default.
- W2900696906 hasRelatedWork W1991516674 @default.
- W2900696906 hasRelatedWork W1998185361 @default.
- W2900696906 hasRelatedWork W2015920480 @default.
- W2900696906 hasRelatedWork W2036603385 @default.
- W2900696906 hasRelatedWork W2065031196 @default.
- W2900696906 hasRelatedWork W2073854870 @default.
- W2900696906 hasRelatedWork W2416193394 @default.
- W2900696906 hasRelatedWork W2883361795 @default.
- W2900696906 hasRelatedWork W4238198935 @default.
- W2900696906 hasRelatedWork W4248487453 @default.
- W2900696906 hasVolume "35" @default.
- W2900696906 isParatext "false" @default.
- W2900696906 isRetracted "false" @default.
- W2900696906 magId "2900696906" @default.
- W2900696906 workType "article" @default.