Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900869968> ?p ?o ?g. }
- W2900869968 endingPage "213" @default.
- W2900869968 startingPage "195" @default.
- W2900869968 abstract "Abstract The impact of intensive farming on chemical weathering in the Critical Zone is still an open question. Extensively instrumented and monitored over the last 50 years, the Orgeval Critical Zone Observatory (CZO) in France is an observation site impacted by intensive farming since the 1960s. The Orgeval observatory represents an ideal place to study the response and resilience capability of the Critical Zone under agricultural stress. This paper investigates the chemical composition of different water bodies in two nested catchments of the Orgeval CZO, including rainfall, springs, rivers, and rocks, over one and half hydrological year. We show that elemental and strontium isotopic ratios are powerful to constrain the origin of the elements. The results show that the river chemistry at the outlet of the two nested catchments is dominated by rain inputs (particularly atmospheric dust dissolution) and the chemical weathering of limestone and gypsum. Fertilizer input is clearly visible, although the distinction between gypsum dissolution and fertilizer inputs needs more investigation. The mixtures of water masses inferred from our data are in good agreement with the hydrological context of the watershed, that is, a multilayered aquifer structure. At the main outlet of the CZO, we estimate that the input of ocean‐derived solutes through rainfall represents 7 t km −2 year −1 , on the same order of magnitude as the net fertilizer input (10 t km −2 year −1 ), and that rock weathering releases 50 t km −2 year −1 . Including previously published physical erosion rates, we estimate that the total denudation rate (physical and chemical) of the Orgeval CZO is 20 mm (1,000 year) −1 , which, along with the entire Seine watershed, is among the lowest chemical denudation rates for carbonate terrains under temperate climate. Chemical denudation is about 10 times higher than physical erosion in the Orgeval CZO. The consumption of CO 2 by rock weathering is estimated to be between 265.10 3 and 360.10 3 molC km 2 year −1 , similar for the two nested catchments. Compared with the rivers, the springs show a higher CO 2 consumption rate that suggests, as pointed out earlier, a enhancement of carbonate dissolution linked to nitrification and thus fertilizer application. The hyporheic zone appears to be a hot spot in the carbon cycle at the Orgeval CZO. This study sheds light on the complex, anthropocenic, interplay between geology, climate, and human activities that characterize and that take place in intensive agriculture regions." @default.
- W2900869968 created "2018-11-29" @default.
- W2900869968 creator A5038010742 @default.
- W2900869968 creator A5052257661 @default.
- W2900869968 creator A5057739679 @default.
- W2900869968 creator A5065261045 @default.
- W2900869968 creator A5074058435 @default.
- W2900869968 creator A5075891860 @default.
- W2900869968 creator A5091658565 @default.
- W2900869968 date "2018-12-19" @default.
- W2900869968 modified "2023-10-18" @default.
- W2900869968 title "Chemical weathering and CO<sub>2</sub> consumption rate in a multilayered‐aquifer dominated watershed under intensive farming: The Orgeval Critical Zone Observatory, France" @default.
- W2900869968 cites W1592375991 @default.
- W2900869968 cites W1963679845 @default.
- W2900869968 cites W1969847358 @default.
- W2900869968 cites W1969910140 @default.
- W2900869968 cites W1970117846 @default.
- W2900869968 cites W1972697273 @default.
- W2900869968 cites W1972825942 @default.
- W2900869968 cites W1977979180 @default.
- W2900869968 cites W1978728641 @default.
- W2900869968 cites W1985363354 @default.
- W2900869968 cites W1985497960 @default.
- W2900869968 cites W1986969892 @default.
- W2900869968 cites W1987385083 @default.
- W2900869968 cites W1987905950 @default.
- W2900869968 cites W1990943266 @default.
- W2900869968 cites W1993265721 @default.
- W2900869968 cites W2005139830 @default.
- W2900869968 cites W2008587428 @default.
- W2900869968 cites W2013321921 @default.
- W2900869968 cites W2014917534 @default.
- W2900869968 cites W2018786365 @default.
- W2900869968 cites W2049575280 @default.
- W2900869968 cites W2056854428 @default.
- W2900869968 cites W2057925421 @default.
- W2900869968 cites W2059344173 @default.
- W2900869968 cites W2061262324 @default.
- W2900869968 cites W2062245689 @default.
- W2900869968 cites W2065290324 @default.
- W2900869968 cites W2073316322 @default.
- W2900869968 cites W2088837030 @default.
- W2900869968 cites W2089634239 @default.
- W2900869968 cites W2092632012 @default.
- W2900869968 cites W2094679907 @default.
- W2900869968 cites W2094692032 @default.
- W2900869968 cites W2103263182 @default.
- W2900869968 cites W2104845188 @default.
- W2900869968 cites W2119821103 @default.
- W2900869968 cites W2135003112 @default.
- W2900869968 cites W2154783544 @default.
- W2900869968 cites W2250294590 @default.
- W2900869968 cites W2414717783 @default.
- W2900869968 cites W2462318704 @default.
- W2900869968 cites W2658942123 @default.
- W2900869968 cites W2777948205 @default.
- W2900869968 cites W4239928204 @default.
- W2900869968 cites W4250255094 @default.
- W2900869968 cites W4256515963 @default.
- W2900869968 doi "https://doi.org/10.1002/hyp.13340" @default.
- W2900869968 hasPublicationYear "2018" @default.
- W2900869968 type Work @default.
- W2900869968 sameAs 2900869968 @default.
- W2900869968 citedByCount "12" @default.
- W2900869968 countsByYear W29008699682019 @default.
- W2900869968 countsByYear W29008699682020 @default.
- W2900869968 countsByYear W29008699682021 @default.
- W2900869968 countsByYear W29008699682022 @default.
- W2900869968 countsByYear W29008699682023 @default.
- W2900869968 crossrefType "journal-article" @default.
- W2900869968 hasAuthorship W2900869968A5038010742 @default.
- W2900869968 hasAuthorship W2900869968A5052257661 @default.
- W2900869968 hasAuthorship W2900869968A5057739679 @default.
- W2900869968 hasAuthorship W2900869968A5065261045 @default.
- W2900869968 hasAuthorship W2900869968A5074058435 @default.
- W2900869968 hasAuthorship W2900869968A5075891860 @default.
- W2900869968 hasAuthorship W2900869968A5091658565 @default.
- W2900869968 hasConcept C114793014 @default.
- W2900869968 hasConcept C119857082 @default.
- W2900869968 hasConcept C123157820 @default.
- W2900869968 hasConcept C127313418 @default.
- W2900869968 hasConcept C150547873 @default.
- W2900869968 hasConcept C151730666 @default.
- W2900869968 hasConcept C153389437 @default.
- W2900869968 hasConcept C159390177 @default.
- W2900869968 hasConcept C159750122 @default.
- W2900869968 hasConcept C17409809 @default.
- W2900869968 hasConcept C184269829 @default.
- W2900869968 hasConcept C187320778 @default.
- W2900869968 hasConcept C1965285 @default.
- W2900869968 hasConcept C2779343474 @default.
- W2900869968 hasConcept C39432304 @default.
- W2900869968 hasConcept C40724407 @default.
- W2900869968 hasConcept C41008148 @default.
- W2900869968 hasConcept C75622301 @default.
- W2900869968 hasConcept C76177295 @default.
- W2900869968 hasConcept C76886044 @default.
- W2900869968 hasConcept C77928131 @default.